Home
Class 12
PHYSICS
For a body, angular velocity vecomega= h...

For a body, angular velocity `vecomega= hati-2hatj+3hatk` and radius vector `vecr=hati+hatj+hatk`, then its velocity `(vecv= vecomega xx vecr)` is :

A

`-5hati+2hatj+3 hatk`

B

`-5hati+2hatj-3 hatk`

C

`-5hati-2hatj+3 hatk`

D

`-5hati-2hatj-3 hatk`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the velocity vector \(\vec{v}\) given the angular velocity vector \(\vec{\omega}\) and the radius vector \(\vec{r}\), we will use the cross product formula: \[ \vec{v} = \vec{\omega} \times \vec{r} \] ### Step-by-Step Solution: 1. **Identify the vectors**: - Angular velocity vector: \[ \vec{\omega} = \hat{i} - 2\hat{j} + 3\hat{k} \] - Radius vector: \[ \vec{r} = \hat{i} + \hat{j} + \hat{k} \] 2. **Set up the cross product**: The cross product \(\vec{v} = \vec{\omega} \times \vec{r}\) can be calculated using the determinant of a matrix formed by the unit vectors and the components of \(\vec{\omega}\) and \(\vec{r}\): \[ \vec{v} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -2 & 3 \\ 1 & 1 & 1 \end{vmatrix} \] 3. **Calculate the determinant**: To compute the determinant, we can expand it as follows: \[ \vec{v} = \hat{i} \begin{vmatrix} -2 & 3 \\ 1 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 3 \\ 1 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & -2 \\ 1 & 1 \end{vmatrix} \] 4. **Calculate each of the 2x2 determinants**: - For \(\hat{i}\): \[ \begin{vmatrix} -2 & 3 \\ 1 & 1 \end{vmatrix} = (-2)(1) - (3)(1) = -2 - 3 = -5 \] - For \(\hat{j}\): \[ \begin{vmatrix} 1 & 3 \\ 1 & 1 \end{vmatrix} = (1)(1) - (3)(1) = 1 - 3 = -2 \] - For \(\hat{k}\): \[ \begin{vmatrix} 1 & -2 \\ 1 & 1 \end{vmatrix} = (1)(1) - (-2)(1) = 1 + 2 = 3 \] 5. **Combine the results**: Now substituting back into the expression for \(\vec{v}\): \[ \vec{v} = -5\hat{i} + 2\hat{j} + 3\hat{k} \] 6. **Final Result**: Therefore, the velocity vector is: \[ \vec{v} = -5\hat{i} + 2\hat{j} + 3\hat{k} \]

To solve the problem of finding the velocity vector \(\vec{v}\) given the angular velocity vector \(\vec{\omega}\) and the radius vector \(\vec{r}\), we will use the cross product formula: \[ \vec{v} = \vec{\omega} \times \vec{r} \] ### Step-by-Step Solution: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If vecomega=2hati-3hatj+4hatk and vecr=2hati-3hatj+2hatk then the linear velocity is

What is the value of linear veloctity, if vecomega =hati-hatj+hatk and vecr=hati+2hatj+3hatk

What is the value of linear velocity, if vecomega=3hati-4hatj+hatk and vecr=5hati-6hatj+6hatk ?

What is the value of linear velocity, if vecomega=3hati-4hatj+hatk and vecr=5hati-6hatj+6hatk ?

The linear velocity of rotating body is given by vecv = vecomega xx vecr where vecomega is the angular velocity and vecr is the radius vector. The angular velocity of body vecomega = hati - 2hatj + 2hatk and this radius vector vecr = 4hatj - 3hatk , then |vecv| is

If angular velocity of a point object is vecomega=(hati+hat2j-hatk) rad/s and its position vector vecr=(hati+hatj-5hatk) m then linear velocity of the object will be

The angular velocity of a body is vecomega=3hati+5hatj+6hatk("radian"//s) . A torque vectau=hati+2hatj+3hatk(Nm) acts on it. The rotational power (in watt) is

If hati, hatj, hatk are unit orthonormal vectors and veca is a vector, If veca xx vecr = hatj , then veca.vecr :

The angle between the planes vecr.(2hati-hatj+hatk)=6 and vecr.(hati+hatj+2hatk)=5 is

Find the image of a point having position vector, 3hati-2hatj+hatk in the plane vecr.(3hati-hatj+4hatk)=2