Home
Class 12
MATHS
If alpha,beta are the roots of x^2+p x+q...

If `alpha,beta` are the roots of `x^2+p x+q=0a n dgamma,delta` are the roots of `x^2+r x+s=0,` evaluate `(alpha-gamma)(alpha-delta)(beta-gamma)(beta-delta)` in lterms of `p ,q ,r ,a n dsdot` Deduce the condition that the equation has a common root.

Text Solution

Verified by Experts

`:'alpha, beta` are the roots of the equation
`x^(2)+px+q=0`
`:.alpha+beta=-p,alpha beta=q`……….i
and `gamma, delta` are the roots of the equation `x^(w2)+rx+s=0`
`:.gamma+delta=-r,gamma delta=s`…ii
Now `(alpha-gamma)(alpha-delta)(beta-gamma)(beta-delta)`
`=[(alpha^(2)-alpha(gamma+delta)+gamma delta][beta^(2)-beta(gamma+delta)+gamma delta]`
`=(alpha^(2)+r alpha +s)(beta^(2)+rbeta+s)` [from Eq (ii) ]
`impliesalpha^(2)+r alpha beta(alpha +beta)+r^(2) alpha beta+s(alpha^(2)+beta^(2))`
`+sr(alpha+beta)+s^(2)`
`=alpha^(2) beta^(2)+r alpha beta(alpha +beta)+r^(2) alpha beta+s[(alpha +beta)^(2)-2alpha beta]`
`+sr(alpha +beta)+s^(2)`
`=q^(2)-pqr+r^(2)q+s(p^(2)-2q)+sr(-p)+s^(2)`
`=(q-s)^(2)-rpq+r^(2)q+sp^(2)-prs`
`=(q-s)^(2)-rq(p-r)+sp(p-r)`
`=(q-s)^(2)+(p-r)(sp-rq)`............iii
For a common root (let `alpha=gamma` or `beta=delta`)
then `(alpha-gamma)(alpha-delta)(beta-gamma)(beta-delta)=0` .........iv
From eqs (iii) and iv) we get
`(q-s)^(2)+(p-r)(sp-rq)=0` ltbr. `=(q-s)^(2)=(p-r)(rq-sp)` which is the required condition.
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|11 Videos
  • THEORY OF EQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|10 Videos
  • THE STRAIGHT LINES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|17 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Three Dimensional Coordinate System Exercise 12 : Question Asked in Previous Years Exam|2 Videos

Similar Questions

Explore conceptually related problems

If alpha,beta are the roots of x^2+p x+q=0 and gamma,delta are the roots of x^2+p x+r=0, then ((alpha-gamma)(alpha-delta))/((beta-gamma)(beta-delta))= (a) \ 1 (b) \ q (c) \ r (d) \ q+r

If alpha,beta are roots of x^2+p x+1=0a n dgamma,delta are the roots of x^2+q x+1=0 , then prove that q^2-p^2=(alpha-gamma)(beta-gamma)(alpha+delta)(beta+delta) .

If alpha, beta are the roots of the quadratic equation x ^(2)+ px+q=0 and gamma, delta are the roots of x ^(2)+px-r =0 then (alpha- gamma ) (alpha -delta ) is equal to :

If alpha , beta are the roots of x^2+ax -b=0 and gamma , sigma are the roots of x^2 + ax +b=0 then (alpha - gamma )(beta - gamma )( alpha - sigma )( beta - sigma )=

If alpha,beta are the roots of the equation x^2+p x+1=0;gamma,delta the roots of the equation x^2+q x+1=0 , then (alpha-gamma)(alpha+delta)(beta-gamma)(beta+delta)= (a) q^2-p^2 (b) p^2-q^2 (c) p^2=q^2 (d) none of these

If alpha , beta are the roots of x^2 - 3x +a =0 and gamma , delta are the roots of x^2 -12 x+b=0 and alpha , beta , gamma , delta in that order from a geometric progression increasing order with common ration r gt 1 then a+b=

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum alpha^2

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum alpha^3

If alpha, and beta are the roots of x^(2)+px+q=0 form a quadratic equation whose roots are (alpha-beta)^(2) and (alpha+beta)^(2) .

Let alpha, beta " the roots of " x^(2) -4x + A =0 and gamma, delta " be the roots of " x^(2) -36x +B =0. " If " alpha, beta , gamma, delta forms an increasing G.P. Then

ARIHANT MATHS ENGLISH-THEORY OF EQUATIONS-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If alpha,beta are the roots of x^2+p x+q=0a n dgamma,delta are the roo...

    Text Solution

    |

  2. In the quadratic equation ax^2 + bx + c = 0. if delta = b^2-4ac and al...

    Text Solution

    |

  3. Let S denote the set of all polynomials P(x) of degree lt=2 such th...

    Text Solution

    |

  4. If the roots of x^2-b x+c=0 are two consecutive integers, then b^2-4c ...

    Text Solution

    |

  5. If the equation a(n)x^(n)+a(n-1)x^(n-1)+..+a(1)x=0, a(1)!=0, n ge2, ha...

    Text Solution

    |

  6. If both the roots of the quadratic equation x^(2)-2kx+k^(2)+k-5=0 are ...

    Text Solution

    |

  7. Let aa n db be the roots of the equation x^2-10 c x-11 d=0 and those o...

    Text Solution

    |

  8. Let a,b,c be the sides of a triangle. No two of them are equal and lam...

    Text Solution

    |

  9. All the values of m for whilch both the roots of the equation x^2-2m x...

    Text Solution

    |

  10. If the roots of the quadratic equation x^2+p x+q=0 are tan30^0a n dtan...

    Text Solution

    |

  11. Let alpha,beta be the roots of the equation x^2-p x+r=0a n dalpha//2,2...

    Text Solution

    |

  12. If the difference between the roots of the equation x^2+a x+1=0 is les...

    Text Solution

    |

  13. Let a ,b , c ,p ,q be real numbers. Suppose alpha,beta are the roots o...

    Text Solution

    |

  14. The quadratic equations x^2""-6x""+""a""=""0""a n d ""x^2""-c x""+""...

    Text Solution

    |

  15. How many real solutions does the equation x^7+14 x^5+16 x^3+30 x-560=0...

    Text Solution

    |

  16. Suppose the cubic x^(3)-px+q has three distinct real roots, where pgt0...

    Text Solution

    |

  17. The smallest value of k, for which both the roots of the equation, x^2...

    Text Solution

    |

  18. If the roots of the equation b x^2+""c x""+""a""=""0 be imaginary, t...

    Text Solution

    |

  19. Let p and q real number such that p!= 0,p^3!=q and p^3!=-q. if alpha a...

    Text Solution

    |

  20. solve 0=1+2x+3x^2

    Text Solution

    |

  21. Find the roots of x^2-6x-2=0

    Text Solution

    |