Home
Class 12
MATHS
If 0 lt x lt 1000 and [x/2]+[x/3]+[x/5...

If `0 lt x lt 1000 and [x/2]+[x/3]+[x/5]=31/30x`, (where `[.]` denotes the greatest integer function then number of possible values of x.

A

32

B

33

C

34

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\left[\frac{x}{2}\right] + \left[\frac{x}{3}\right] + \left[\frac{x}{5}\right] = \frac{31}{30}x\) under the constraints \(0 < x < 1000\), we will follow these steps: ### Step 1: Understanding the Greatest Integer Function The greatest integer function \([\cdot]\) gives the largest integer less than or equal to the argument. Thus, we can express: - \(\left[\frac{x}{2}\right] = \frac{x}{2} - \{\frac{x}{2}\}\) - \(\left[\frac{x}{3}\right] = \frac{x}{3} - \{\frac{x}{3}\}\) - \(\left[\frac{x}{5}\right] = \frac{x}{5} - \{\frac{x}{5}\}\) Where \(\{y\}\) denotes the fractional part of \(y\). ### Step 2: Rewrite the Equation Substituting the expressions from Step 1 into the equation gives: \[ \left(\frac{x}{2} - \{\frac{x}{2}\}\right) + \left(\frac{x}{3} - \{\frac{x}{3}\}\right) + \left(\frac{x}{5} - \{\frac{x}{5}\}\right) = \frac{31}{30}x \] This simplifies to: \[ \frac{x}{2} + \frac{x}{3} + \frac{x}{5} - \left(\{\frac{x}{2}\} + \{\frac{x}{3}\} + \{\frac{x}{5}\}\right) = \frac{31}{30}x \] ### Step 3: Calculate the Left Side To combine the fractions on the left side, find a common denominator: \[ \text{LCM}(2, 3, 5) = 30 \] Thus: \[ \frac{15x}{30} + \frac{10x}{30} + \frac{6x}{30} = \frac{31x}{30} \] So we have: \[ \frac{31x}{30} - \left(\{\frac{x}{2}\} + \{\frac{x}{3}\} + \{\frac{x}{5}\}\right) = \frac{31}{30}x \] ### Step 4: Simplifying the Equation From the above equation, we can deduce: \[ -\left(\{\frac{x}{2}\} + \{\frac{x}{3}\} + \{\frac{x}{5}\}\right) = 0 \] This implies: \[ \{\frac{x}{2}\} + \{\frac{x}{3}\} + \{\frac{x}{5}\} = 0 \] Since the fractional parts are non-negative, this means: \[ \{\frac{x}{2}\} = 0, \quad \{\frac{x}{3}\} = 0, \quad \{\frac{x}{5}\} = 0 \] ### Step 5: Finding Values of \(x\) The conditions imply that \(x\) must be a multiple of \(2\), \(3\), and \(5\). The least common multiple of these numbers is: \[ \text{LCM}(2, 3, 5) = 30 \] Thus, \(x\) can be expressed as: \[ x = 30n \quad \text{for integer } n \] ### Step 6: Determine the Range of \(n\) Given the constraint \(0 < x < 1000\): \[ 0 < 30n < 1000 \] Dividing through by \(30\): \[ 0 < n < \frac{1000}{30} \approx 33.33 \] Thus, \(n\) can take integer values from \(1\) to \(33\). ### Step 7: Conclusion The possible values of \(n\) are \(1, 2, 3, \ldots, 33\), giving us a total of \(33\) possible values for \(x\). ### Final Answer The number of possible values of \(x\) is **33**. ---
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|10 Videos
  • THEORY OF EQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|29 Videos
  • THEORY OF EQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|9 Videos
  • THE STRAIGHT LINES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|17 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Three Dimensional Coordinate System Exercise 12 : Question Asked in Previous Years Exam|2 Videos

Similar Questions

Explore conceptually related problems

If [x]^(2)-3[x]+2=0 where [*] denotes the greatest integer function, then

Solve x^2-4x-[x]=0 (where [] denotes the greatest integer function).

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is

Lt_(xto2) [x] where [*] denotes the greatest integer function is equal to

If f(x)={|1-4x^2|,0lt=x<1 and [x^2-2x],1lt=x<2 where [.] denotes the greatest integer function, then

the value of int_(0)^([x]) dx (where , [.] denotes the greatest integer function)

If f(x)=([x])/(|x|), x ne 0 , where [.] denotes the greatest integer function, then f'(1) is

Given lim_(x to 0)(f(x))/(x^(2))=2 , where [.] denotes the greatest integer function, then

The range of f(x)=(2+x-[x])/(1-x+[x]) .where [ ] denotes the greatest integer function is