Home
Class 12
MATHS
The number of points having position vec...

The number of points having position vector `a hat i + b hat j + c hatk `, where `1 leq a,b,cleq10` and `a,b,c in N`, such that `2^a + 3^b+5^c` is a multiple of 4 is (A) 1000 (B) 500 (C) 250 (D) 125

A

70

B

140

C

210

D

280

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the number of points with position vectors \( \hat{i} + \hat{j} + \hat{k} \) where \( 1 \leq a, b, c \leq 10 \) and \( a, b, c \in \mathbb{N} \) such that \( 2^a + 3^b + 5^c \) is a multiple of 4. ### Step 1: Analyze the expression \( 2^a + 3^b + 5^c \) We need to determine when \( 2^a + 3^b + 5^c \equiv 0 \mod 4 \). - **For \( 2^a \):** - If \( a = 1 \), then \( 2^a \equiv 2 \mod 4 \). - If \( a \geq 2 \), then \( 2^a \equiv 0 \mod 4 \). - **For \( 3^b \):** - \( 3^1 \equiv 3 \mod 4 \) - \( 3^2 \equiv 1 \mod 4 \) - \( 3^3 \equiv 3 \mod 4 \) - \( 3^4 \equiv 1 \mod 4 \) - Thus, \( 3^b \equiv 3 \mod 4 \) if \( b \) is odd, and \( 3^b \equiv 1 \mod 4 \) if \( b \) is even. - **For \( 5^c \):** - \( 5 \equiv 1 \mod 4 \) for any \( c \). - Thus, \( 5^c \equiv 1 \mod 4 \). ### Step 2: Set up cases based on values of \( a \) #### Case 1: \( a = 1 \) In this case, \( 2^a \equiv 2 \mod 4 \). We need: \[ 2 + 3^b + 5^c \equiv 0 \mod 4 \] This simplifies to: \[ 3^b + 5^c \equiv 2 \mod 4 \] Since \( 5^c \equiv 1 \mod 4 \), we have: \[ 3^b + 1 \equiv 2 \mod 4 \] This implies: \[ 3^b \equiv 1 \mod 4 \] Thus, \( b \) must be even. The even values for \( b \) in the range \( 1 \leq b \leq 10 \) are \( 2, 4, 6, 8, 10 \) (5 options). \( c \) can take any value from 1 to 10 (10 options). So, the total combinations for this case: \[ 1 \text{ (for } a = 1) \times 5 \text{ (even } b) \times 10 \text{ (any } c) = 50 \] #### Case 2: \( a \geq 2 \) In this case, \( 2^a \equiv 0 \mod 4 \). We need: \[ 0 + 3^b + 5^c \equiv 0 \mod 4 \] This simplifies to: \[ 3^b + 1 \equiv 0 \mod 4 \] Thus: \[ 3^b \equiv 3 \mod 4 \] So \( b \) must be odd. The odd values for \( b \) in the range \( 1 \leq b \leq 10 \) are \( 1, 3, 5, 7, 9 \) (5 options). \( a \) can take values from 2 to 10 (9 options), and \( c \) can take any value from 1 to 10 (10 options). So, the total combinations for this case: \[ 9 \text{ (for } a \geq 2) \times 5 \text{ (odd } b) \times 10 \text{ (any } c) = 450 \] ### Step 3: Total combinations Adding both cases together: \[ 50 + 450 = 500 \] Thus, the total number of points is \( \boxed{500} \).

To solve the problem, we need to find the number of points with position vectors \( \hat{i} + \hat{j} + \hat{k} \) where \( 1 \leq a, b, c \leq 10 \) and \( a, b, c \in \mathbb{N} \) such that \( 2^a + 3^b + 5^c \) is a multiple of 4. ### Step 1: Analyze the expression \( 2^a + 3^b + 5^c \) We need to determine when \( 2^a + 3^b + 5^c \equiv 0 \mod 4 \). - **For \( 2^a \):** - If \( a = 1 \), then \( 2^a \equiv 2 \mod 4 \). ...
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples: Single Matching Type Questions|1 Videos
  • PERMUTATIONS AND COMBINATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|11 Videos
  • PARABOLA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|36 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos

Similar Questions

Explore conceptually related problems

If vec a= hat i+ hat j+ hat k , vec c= hat j- hat k , vec adot vec b=5 and vec ax vec b= vec c , then vec b is equal to

If vec a= hat i+ hat j+ hat k\ a n d vec b= hat j- hat k , find a vector vec c such that vec a\ "x"\ vec c= vec b and vec adot\ vec c=3

Area of a rectangle having vertices A, B, C and D with position vectors - hat i+1/2 hat j+4 hat k , hat i+1/2 hat j+4 hat k , hat i-1/2 hat j+4 hat k and - hat i-1/2 hat j+4 hat k respectively is(A) 1/2 (B) 1 (C) 2 (D) 4

Consider points A, B, C and D with position vectors 7 hati - 4 hat j + 7 hat k , hati - 6 hat j + 10 hat k , - hati - 3 hatj + 4 hatk and 5 hati - hatj + 5 hatk respectively. Then, ABCD is a

The position vector of a point C with respect to B is hat i +hat j and that of B with respect to A is hati-hatj . The position vector of C with respect to A is

If three points A ,\ B ,\ a n d\ C have position vectors hat i+x hat j+3 hat k ,\ 3 hat i+4 hat j+7 hat k\ a n d\ y hat i-2 hat j-5 hat k respectively are collinear, them (x , y)= a. (2,-3) b. (-2,3) c. (-2,-3) d. (2,3)

If points A(60 hat i+3 hat j),\ B(40 hat i-8 hat j)a n d\ C(a hat i-52 hat j) are collinear, then a is equal to a. 40 b. -40 c. 20 d. -20

If vec a=3 hat i- hat j-4 hat k , vec b=2 hat i+4 hat j-3 hat k and vec c= hat i+2 hat j- hat k , find |3 vec a-2 hat b+4 hat c|dot

If vec a= hat i+ hat j+ hat ka n d vec b= hat i-2 hat j+ hat k , then find vector vec c such that vec adot vec c=2a n d vec axx vec c= vec bdot

If vec a= hat i+ hat j+ hat k ,\ vec b=2 hat i- hat j+3 hat k\ a n d\ vec c= hat i-2 hat j+ hat k find a unit vector parallel to 2 vec a- vec b+3 vec c

ARIHANT MATHS ENGLISH-PERMUTATIONS AND COMBINATIONS -Exercise (Questions Asked In Previous 13 Years Exam)
  1. The number of points having position vector a hat i + b hat j + c hatk...

    Text Solution

    |

  2. There is a rectangular sheet of dimension (2m-1)xx(2n-1), (where m > 0...

    Text Solution

    |

  3. If the letters of the word SACHIN are arranged in all possible ways...

    Text Solution

    |

  4. lf r, s, t are prime numbers and p, q are the positive integers such t...

    Text Solution

    |

  5. At an election a voter may vote for nany number of candidates , not gr...

    Text Solution

    |

  6. The letters of the word COCHIN are permuted and all the permutation...

    Text Solution

    |

  7. The set S""=""{1,""2,""3,""........ ,""12) is to be partitioned into...

    Text Solution

    |

  8. Consider all possible permutations of the letters of the word ENDEANOE...

    Text Solution

    |

  9. How many different words can be formed by jumbling the letters in the ...

    Text Solution

    |

  10. In a shop, there are five types of ice-creams available. A child buys ...

    Text Solution

    |

  11. The number of seven digit integers, with sum of the digits equal to 10...

    Text Solution

    |

  12. From 6 different novels and 3 different dictionaries, 4 novels and ...

    Text Solution

    |

  13. There are two urns. Urn A has 3 distinct red balls and urn B has 9 ...

    Text Solution

    |

  14. Statement-1: The number of ways of distributing 10 identical balls in ...

    Text Solution

    |

  15. There are 10 points in a plane, out of these 6 are collinear. The numb...

    Text Solution

    |

  16. The total number of ways in which 5 balls of differert colours can be ...

    Text Solution

    |

  17. Let n denote the number of all n-digit positive integers formed by the...

    Text Solution

    |

  18. Let a(n) denote the number of all n-digit numbers formed by the digits...

    Text Solution

    |

  19. Assuming the balls to be identical except for difference in colours, t...

    Text Solution

    |

  20. Let Tn be the number of all possible triangles formed by joining ve...

    Text Solution

    |

  21. Consider the set of eight vector V={a hat i+b hat j+c hat k ; a ,bc in...

    Text Solution

    |