Home
Class 12
MATHS
If 15! =2^alpha* 3^beta*5^gamma*7^delt...

If `15! =2^alpha* 3^beta*5^gamma*7^delta*11^theta * 13^phi`, then the value of `alpha-beta+gamma-delta+theta-phi` is:

A

(a) `4`

B

(b) `6`

C

(c) `8`

D

(d) `10`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( \alpha, \beta, \gamma, \delta, \theta, \phi \) in the prime factorization of \( 15! \) and then compute \( \alpha - \beta + \gamma - \delta + \theta - \phi \). ### Step-by-Step Solution: 1. **Calculate \( 15! \)**: \[ 15! = 1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 \times 9 \times 10 \times 11 \times 12 \times 13 \times 14 \times 15 \] 2. **Identify the prime factorization of each number**: - \( 1 \) contributes nothing. - \( 2 = 2^1 \) - \( 3 = 3^1 \) - \( 4 = 2^2 \) - \( 5 = 5^1 \) - \( 6 = 2^1 \times 3^1 \) - \( 7 = 7^1 \) - \( 8 = 2^3 \) - \( 9 = 3^2 \) - \( 10 = 2^1 \times 5^1 \) - \( 11 = 11^1 \) - \( 12 = 2^2 \times 3^1 \) - \( 13 = 13^1 \) - \( 14 = 2^1 \times 7^1 \) - \( 15 = 3^1 \times 5^1 \) 3. **Count the total powers of each prime**: - **For \( 2 \)**: - From \( 2: 1 \) - From \( 4: 2 \) - From \( 6: 1 \) - From \( 8: 3 \) - From \( 10: 1 \) - From \( 12: 2 \) - From \( 14: 1 \) - Total: \( 1 + 2 + 1 + 3 + 1 + 2 + 1 = 11 \) - So, \( \alpha = 11 \) - **For \( 3 \)**: - From \( 3: 1 \) - From \( 6: 1 \) - From \( 9: 2 \) - From \( 12: 1 \) - From \( 15: 1 \) - Total: \( 1 + 1 + 2 + 1 + 1 = 6 \) - So, \( \beta = 6 \) - **For \( 5 \)**: - From \( 5: 1 \) - From \( 10: 1 \) - From \( 15: 1 \) - Total: \( 1 + 1 + 1 = 3 \) - So, \( \gamma = 3 \) - **For \( 7 \)**: - From \( 7: 1 \) - From \( 14: 1 \) - Total: \( 1 + 1 = 2 \) - So, \( \delta = 2 \) - **For \( 11 \)**: - From \( 11: 1 \) - Total: \( 1 \) - So, \( \theta = 1 \) - **For \( 13 \)**: - From \( 13: 1 \) - Total: \( 1 \) - So, \( \phi = 1 \) 4. **Calculate \( \alpha - \beta + \gamma - \delta + \theta - \phi \)**: \[ \alpha - \beta + \gamma - \delta + \theta - \phi = 11 - 6 + 3 - 2 + 1 - 1 \] \[ = 11 - 6 = 5 \] \[ = 5 + 3 = 8 \] \[ = 8 - 2 = 6 \] \[ = 6 + 1 = 7 \] \[ = 7 - 1 = 6 \] 5. **Final Answer**: The value of \( \alpha - \beta + \gamma - \delta + \theta - \phi \) is \( 6 \).
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • PERMUTATIONS AND COMBINATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|11 Videos
  • PERMUTATIONS AND COMBINATIONS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples: Single Matching Type Questions|1 Videos
  • PARABOLA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|36 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos

Similar Questions

Explore conceptually related problems

If 102! =2^(alpha)*3^(beta)*5^(gamma)*7^(delta) …, then

If alpha,beta,gamma are the roots of 4x^3-6x^2+7x+3=0 then find the value of alpha beta +beta gamma+gamma alpha .

If alpha, beta, gamma are the roots of x^(3) + ax^(2) + b = 0 , then the value of |(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)| , is

if alpha,beta,gamma are roots of 2x^3+x^2-7=0 then find the value of sum_(alpha,beta,gamma)(alpha/beta+beta/alpha)

designated by alpha, beta, gamma and delta are in order:

If alpha,beta,gamma are roots of the equation x^(3)+px+q=0 then the value of |{:(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta):}| is

If a line makes angles alpha, beta, gamma, delta with the diafonals of a cubes then the value of 9(cos 2alpha + cos 2beta + cos2gamma + cos 2 delta )^(2) equals ….......

If alpha+beta, gamma epsilon R^(+) such that alpha gamma =1/(beta) then maximum value of alpha^(beta+gamma), .beta^(beta+gamma).gamma^(alpha+beta) is_____

If alpha, beta, gamma are the roots of the equation x^3 + px^2 + qx + r = n then the value of (alpha - 1/(beta gamma)) (beta -1/(gamma alpha)) (gamma-1/(alpha beta)) is:

If alpha , beta , gamma are the roots of x^3 -3x +1=0 then the equation whose roots are alpha - (1)/( beta gamma) , beta - (1)/( gamma alpha ) , gamma - (1)/( alpha beta ) is