Home
Class 12
MATHS
if .^(2n+1)P(n-1):^(2n-1)P(n)=7:10, then...

if `.^(2n+1)P_(n-1):^(2n-1)P_(n)=7:10`, then `.^(n)P_(3)` equals

A

60

B

24

C

120

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( nP3 \) given the equation: \[ \frac{(2n+1)P(n-1)}{(2n-1)P(n)} = \frac{7}{10} \] ### Step 1: Write the Permutations in Factorial Form Using the formula for permutations, \( nPr = \frac{n!}{(n-r)!} \), we can express the left-hand side: \[ (2n+1)P(n-1) = \frac{(2n+1)!}{(2n+1 - (n-1))!} = \frac{(2n+1)!}{(n+2)!} \] \[ (2n-1)P(n) = \frac{(2n-1)!}{(2n-1 - n)!} = \frac{(2n-1)!}{(n-1)!} \] ### Step 2: Substitute into the Equation Substituting these into the equation gives: \[ \frac{\frac{(2n+1)!}{(n+2)!}}{\frac{(2n-1)!}{(n-1)!}} = \frac{7}{10} \] This simplifies to: \[ \frac{(2n+1)! \cdot (n-1)!}{(2n-1)! \cdot (n+2)!} = \frac{7}{10} \] ### Step 3: Simplify the Left Side Using the property \( (2n+1)! = (2n+1)(2n)(2n-1)! \), we can rewrite the left side: \[ \frac{(2n+1)(2n)(2n-1)! \cdot (n-1)!}{(2n-1)! \cdot (n+2)(n+1)(n!)} = \frac{(2n+1)(2n)(n-1)!}{(n+2)(n+1)(n!)} \] ### Step 4: Cancel Out Factorials After canceling \( (2n-1)! \) and \( (n-1)! \): \[ \frac{(2n+1)(2n)}{(n+2)(n+1)} = \frac{7}{10} \] ### Step 5: Cross Multiply Cross multiplying gives: \[ 10(2n+1)(2n) = 7(n+2)(n+1) \] ### Step 6: Expand Both Sides Expanding both sides: \[ 40n^2 + 20n = 7(n^2 + 3n + 2) \] This simplifies to: \[ 40n^2 + 20n = 7n^2 + 21n + 14 \] ### Step 7: Rearranging the Equation Rearranging gives: \[ 40n^2 - 7n^2 + 20n - 21n - 14 = 0 \] \[ 33n^2 - n - 14 = 0 \] ### Step 8: Solve the Quadratic Equation Using the quadratic formula \( n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 33 \), \( b = -1 \), and \( c = -14 \): \[ n = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \cdot 33 \cdot (-14)}}{2 \cdot 33} \] Calculating the discriminant: \[ 1 + 1848 = 1849 \] So, \[ n = \frac{1 \pm 43}{66} \] Calculating the two possible values for \( n \): 1. \( n = \frac{44}{66} = \frac{2}{3} \) (not valid since \( n \) must be an integer) 2. \( n = \frac{-42}{66} \) (not valid) ### Step 9: Check for Integer Solutions The only valid integer solution is \( n = 3 \). ### Step 10: Calculate \( nP3 \) Now we find \( nP3 \): \[ nP3 = \frac{n!}{(n-3)!} \] For \( n = 3 \): \[ 3P3 = \frac{3!}{0!} = 3! = 6 \] ### Final Answer Thus, the value of \( nP3 \) is: \[ \boxed{6} \]
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|11 Videos
  • PERMUTATIONS AND COMBINATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|18 Videos
  • PERMUTATIONS AND COMBINATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|11 Videos
  • PARABOLA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|36 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos

Similar Questions

Explore conceptually related problems

If ""^(2n-1)P_(n): ""^(2n+1)P_(n-1)=22:7 , find n.

If "^(2n+1)P_(n-1):^(2n-1)P_n=3:5, then find the value of n .

If 2n+1P(n-1) : (2n-1)Pn =3:5,find n

If .^(n)C_(5) = .^(n)C_(7) , then find .^(n)P_(3)

if .^(m+n) P_(2)=56 and .^(m-n)P_(3)=24 , then (.^(m)P_(3))/(.^(n)P_(2)) equals

If .^(n-1)P_3 :^(n+1)P_3 = 5 : 12, find n .

If P_(n) denotes the product of all the coefficients of (1+x)^(n) and 9!P_(n+1)=10^(9)P_(n) then n is equal to

If .^(n)P_(4): .^(n)P_(5) = 1:2 , find the value of n.

Find n if : ""^(2n+1) P_(n-1) : ""^(2n-1) P_n = 3: 5

Find the value of n from each of the following: (i) 10 .^(n)P_(6) = .^(n+1)P_(3) (ii) 16.^(n)P_(3) = 13 .^(n+1)P_(3)