Home
Class 12
MATHS
If 300!=3^(m)xxan integer, then find the...

If `300!=3^(m)xx`an integer, then find the value of m .

A

m=148

B

m=150

C

It is equivalent to number of n is 150!`=2^(n-2)xx`an integer

D

`m=.^(150)C_(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( m \) such that \( 300! = 3^m \times k \) (where \( k \) is an integer), we need to determine the highest power of 3 that divides \( 300! \). This can be calculated using the formula for finding the highest power of a prime \( p \) that divides \( n! \): \[ m = \sum_{i=1}^{\infty} \left\lfloor \frac{n}{p^i} \right\rfloor \] In our case, \( n = 300 \) and \( p = 3 \). ### Step 1: Calculate \( \left\lfloor \frac{300}{3} \right\rfloor \) \[ \left\lfloor \frac{300}{3} \right\rfloor = \left\lfloor 100 \right\rfloor = 100 \] ### Step 2: Calculate \( \left\lfloor \frac{300}{3^2} \right\rfloor \) \[ \left\lfloor \frac{300}{9} \right\rfloor = \left\lfloor 33.33 \right\rfloor = 33 \] ### Step 3: Calculate \( \left\lfloor \frac{300}{3^3} \right\rfloor \) \[ \left\lfloor \frac{300}{27} \right\rfloor = \left\lfloor 11.11 \right\rfloor = 11 \] ### Step 4: Calculate \( \left\lfloor \frac{300}{3^4} \right\rfloor \) \[ \left\lfloor \frac{300}{81} \right\rfloor = \left\lfloor 3.70 \right\rfloor = 3 \] ### Step 5: Calculate \( \left\lfloor \frac{300}{3^5} \right\rfloor \) \[ \left\lfloor \frac{300}{243} \right\rfloor = \left\lfloor 1.23 \right\rfloor = 1 \] ### Step 6: Calculate \( \left\lfloor \frac{300}{3^6} \right\rfloor \) \[ \left\lfloor \frac{300}{729} \right\rfloor = \left\lfloor 0.41 \right\rfloor = 0 \] Since \( \left\lfloor \frac{300}{3^6} \right\rfloor = 0 \), we stop here. ### Step 7: Sum all the values calculated Now we sum all the values obtained: \[ m = 100 + 33 + 11 + 3 + 1 = 148 \] ### Conclusion Thus, the value of \( m \) is \( 148 \). ### Final Answer Hence, \( m = 148 \). ---

To find the value of \( m \) such that \( 300! = 3^m \times k \) (where \( k \) is an integer), we need to determine the highest power of 3 that divides \( 300! \). This can be calculated using the formula for finding the highest power of a prime \( p \) that divides \( n! \): \[ m = \sum_{i=1}^{\infty} \left\lfloor \frac{n}{p^i} \right\rfloor \] In our case, \( n = 300 \) and \( p = 3 \). ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|15 Videos
  • PERMUTATIONS AND COMBINATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|10 Videos
  • PERMUTATIONS AND COMBINATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|30 Videos
  • PARABOLA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|36 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos

Similar Questions

Explore conceptually related problems

m^2-m+1=0 find the value of m

If m , n in I_0a n d("lim")_(xrarr0)(tan2x-nsinx)/(x^3)= some integer, then find the value of n and also the value of limit.

Find the value of sin300^(@)

Let f(x)=x^(2)+ax+b be a quadratic polynomial in which a and b are integers. If for a given integer n, f(n) f(n+1)=f(m) for some integer m, then the value of m is

Let m be the smallest odd positive iteger for which 1 + 2+ …..+ m is a square of an integer and let n be the smallest even positive integer for which 1 + 2+ ……+ n is a square of an integer. What is the value of m + n ?

If m=root3(125) and n=root3(64) , find the value of m-n-(1)/(m^(2)+mn+n^(2)) .

If m,n,p,q are consecutive integers then the value of i^(m)+i^(n)+i^(p)+i^(q) is

If (m-5, n + 3) = (7, 9), find the values of m and n.

If m = root(3)(15) and n = root(3)(14) , find the value of m - n - (1)/(m^(2) + mn + n^(2))

If 2^(98) - 2^(97) - 2 ^(96) + 2 ^(95) = m xx 2 ^(95) , find the value of m .