Home
Class 12
MATHS
If 102!=2^(alpha)*3^(beta)*5^(gamma)*7^(...

If `102!``=2^(alpha)*3^(beta)*5^(gamma)*7^(delta)`…, then

A

(a) `alpha=98`

B

(b) `beta=2gamma+1`

C

(c) `alpha=2beta`

D

(d) `2gamma=3delta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the values of α, β, γ, and δ in the expression \( 102! = 2^{\alpha} \cdot 3^{\beta} \cdot 5^{\gamma} \cdot 7^{\delta} \cdots \), we will calculate the exponents of the prime factors in \( 102! \) using the formula for finding the exponent of a prime \( p \) in \( n! \): \[ \text{Exponent of } p = \sum_{k=1}^{\infty} \left\lfloor \frac{n}{p^k} \right\rfloor \] ### Step 1: Calculate α (Exponent of 2) 1. **Calculate \( \left\lfloor \frac{102}{2} \right\rfloor \)**: \[ \left\lfloor \frac{102}{2} \right\rfloor = 51 \] 2. **Calculate \( \left\lfloor \frac{102}{4} \right\rfloor \)**: \[ \left\lfloor \frac{102}{4} \right\rfloor = 25 \] 3. **Calculate \( \left\lfloor \frac{102}{8} \right\rfloor \)**: \[ \left\lfloor \frac{102}{8} \right\rfloor = 12 \] 4. **Calculate \( \left\lfloor \frac{102}{16} \right\rfloor \)**: \[ \left\lfloor \frac{102}{16} \right\rfloor = 6 \] 5. **Calculate \( \left\lfloor \frac{102}{32} \right\rfloor \)**: \[ \left\lfloor \frac{102}{32} \right\rfloor = 3 \] 6. **Calculate \( \left\lfloor \frac{102}{64} \right\rfloor \)**: \[ \left\lfloor \frac{102}{64} \right\rfloor = 1 \] 7. **Sum these values**: \[ \alpha = 51 + 25 + 12 + 6 + 3 + 1 = 98 \] ### Step 2: Calculate β (Exponent of 3) 1. **Calculate \( \left\lfloor \frac{102}{3} \right\rfloor \)**: \[ \left\lfloor \frac{102}{3} \right\rfloor = 34 \] 2. **Calculate \( \left\lfloor \frac{102}{9} \right\rfloor \)**: \[ \left\lfloor \frac{102}{9} \right\rfloor = 11 \] 3. **Calculate \( \left\lfloor \frac{102}{27} \right\rfloor \)**: \[ \left\lfloor \frac{102}{27} \right\rfloor = 3 \] 4. **Calculate \( \left\lfloor \frac{102}{81} \right\rfloor \)**: \[ \left\lfloor \frac{102}{81} \right\rfloor = 1 \] 5. **Sum these values**: \[ \beta = 34 + 11 + 3 + 1 = 49 \] ### Step 3: Calculate γ (Exponent of 5) 1. **Calculate \( \left\lfloor \frac{102}{5} \right\rfloor \)**: \[ \left\lfloor \frac{102}{5} \right\rfloor = 20 \] 2. **Calculate \( \left\lfloor \frac{102}{25} \right\rfloor \)**: \[ \left\lfloor \frac{102}{25} \right\rfloor = 4 \] 3. **Calculate \( \left\lfloor \frac{102}{125} \right\rfloor \)**: \[ \left\lfloor \frac{102}{125} \right\rfloor = 0 \] 4. **Sum these values**: \[ \gamma = 20 + 4 + 0 = 24 \] ### Step 4: Calculate δ (Exponent of 7) 1. **Calculate \( \left\lfloor \frac{102}{7} \right\rfloor \)**: \[ \left\lfloor \frac{102}{7} \right\rfloor = 14 \] 2. **Calculate \( \left\lfloor \frac{102}{49} \right\rfloor \)**: \[ \left\lfloor \frac{102}{49} \right\rfloor = 2 \] 3. **Calculate \( \left\lfloor \frac{102}{343} \right\rfloor \)**: \[ \left\lfloor \frac{102}{343} \right\rfloor = 0 \] 4. **Sum these values**: \[ \delta = 14 + 2 + 0 = 16 \] ### Final Values - \( \alpha = 98 \) - \( \beta = 49 \) - \( \gamma = 24 \) - \( \delta = 16 \) ### Relationships 1. **Relation between β and γ**: \[ \beta = 2 \cdot \gamma + 1 \quad \text{(since } 49 = 2 \cdot 24 + 1\text{)} \] 2. **Relation between α and β**: \[ \alpha = 2 \cdot \beta \quad \text{(since } 98 = 2 \cdot 49\text{)} \] 3. **Relation between γ and δ**: \[ 2 \cdot \gamma = 3 \cdot \delta \quad \text{(since } 48 = 3 \cdot 16\text{)} \] ### Summary Thus, the values are: - \( \alpha = 98 \) - \( \beta = 49 \) - \( \gamma = 24 \) - \( \delta = 16 \)

To solve the problem of finding the values of α, β, γ, and δ in the expression \( 102! = 2^{\alpha} \cdot 3^{\beta} \cdot 5^{\gamma} \cdot 7^{\delta} \cdots \), we will calculate the exponents of the prime factors in \( 102! \) using the formula for finding the exponent of a prime \( p \) in \( n! \): \[ \text{Exponent of } p = \sum_{k=1}^{\infty} \left\lfloor \frac{n}{p^k} \right\rfloor \] ### Step 1: Calculate α (Exponent of 2) ...
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|15 Videos
  • PERMUTATIONS AND COMBINATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|10 Videos
  • PERMUTATIONS AND COMBINATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|30 Videos
  • PARABOLA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|36 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos

Similar Questions

Explore conceptually related problems

If 15! =2^alpha* 3^beta*5^gamma*7^delta*11^theta * 13^phi , then the value of alpha-beta+gamma-delta+theta-phi is:

If (sinalpha)/(sinbeta)=(cosgamma)/(cosdelta), then (sin((alpha-beta)/2)*cos((alpha+beta)/2)*cosdelta)/(sin((delta-gamma)/2)*sin((delta+gamma)/2)*sinbeta) is equal to

Let A=[(0,2),(0,0)]and (A+1)^100 -100A=[(alpha,beta),(gamma,delta)], then alpha+beta+gamma+delta=...

Let p(x) =x^6-x^5-x^3-x^2-x and alpha, beta, gamma, delta are the roots of the equation x^4-x^3-x^2-1=0 then P(alpha)+P(beta)+P(gamma)+P(delta)=

If x=sin(alpha-beta)*sin(gamma-delta), y=sin(beta-gamma)*sin(alpha-delta), z=sin(gamma-alpha) *sin(beta-delta) , then :

If cos(alpha+beta)*sin(gamma+delta)=cos(alpha-beta)*sin(gamma-delta), prove that cotalphacotbetacotgamma=cotdelta

If alpha, beta, gamma, delta be the real of the equation x^4+4x^3-6x^2+7x-9=0 show that (1+alpha^2)(1+beta^2) (1+gamma^2)(1+delta^2) equal to 13.

If alpha,beta are roots of x^2+p x+1=0a n dgamma,delta are the roots of x^2+q x+1=0 , then prove that q^2-p^2=(alpha-gamma)(beta-gamma)(alpha+delta)(beta+delta) .

If alpha,beta are the roots of x^2+p x+q=0a n dgamma,delta are the roots of x^2+r x+s=0, evaluate (alpha-gamma)(alpha-delta)(beta-gamma)(beta-delta) in terms of p ,q ,r ,a n dsdot Deduce the condition that the equation has a common root.

If alpha,beta,gamma,delta are four complex numbers such that gamma/delta is real and alpha delta - beta gamma !=0 then z = (alpha + beta t)/(gamma+ deltat) where t is a rational number, then it represents: