Home
Class 12
MATHS
The number of ways of choosing triplet (...

The number of ways of choosing triplet `(x , y ,z)` such that `zgeqmax{x, y}a n dx ,y ,z in {1,2, n ,n+1}` is a. `^n+1C_3+^(n+2)C_3` b. `n(n+1)(2n+1)//6` c. `1^2+2^2++n^2` d. `2((^(n+2)C_3))_(-^(n+2))C_2`

A

`.^(n+1)C_(3)+.^(n+2)C_(3)`

B

`(n(n+1)(2n+1))/(6)`

C

`1^(2)+2^(2)+3^(2)+ . . .+n^(2)`

D

`2(.^(n+2)C_(3))-.^(n+1)C_(2)`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C, D

Triplets with
(i) x=y`ltz`
(ii) `x lt y lt z`
(iii) `y lt x lt z`
can be chosen in `.^(n+1)C_(2),.^(n+1)C_(3),.^(n+1)C_(3)` ways.
`therefore.^(n+1)C_(2)+.^(n+1)C_(3)+.^(n+1)C_(3)=.^(n+2)C_(3)+.^(n+1)C_(3)`
`=2(.^(n+2)C_(3))-.^(n+1)C_(2)`
`=(n(n-1)(2n+1))/(6)`
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|15 Videos
  • PERMUTATIONS AND COMBINATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|10 Videos
  • PERMUTATIONS AND COMBINATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|30 Videos
  • PARABOLA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|36 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos

Similar Questions

Explore conceptually related problems

The number of ways of choosing triplet (x , y ,z) such that zgtmax{x, y} and x ,y ,z in {1,2,.......... n, n+1} is (A) .^n+1C_3+^(n+2)C_3 (B) n(n+1)(2n+1)//6 (C) 1^2+2^2+..............+n^2 (D) 2(.^(n+2)C_3)-(.^(n+1)C_2)

The total number of ways of selecting two numbers from the set {1,2, 3, 4, ........3n} so that their sum is divisible by 3 is equal to a. (2n^2-n)/2 b. (3n^2-n)/2 c. 2n^2-n d. 3n^2-n

Let A be a set of n(geq3) distance elements. The number of triplets (x ,y ,z) of the A elements in which at least two coordinates is equal to a. ^n P_3 b. n^3-^n P_3 c. 3n^2-2n d. 3n^2-(n-1)

The standard deviation of the data: x : , 1, a , a^2 , ..., a^n f: , ^n C_0 , ^n C_1 , ^n C_2 , ..., ^n C_n is ((1+a^2)/2)^n-((1+a)/2)^(2n) (b) ((1+a^2)/2)^(2n)-((1+a^2)/2)^(2n) (c) ((1+a)/2)^(2n)-((1+a^2)/2)^n (d) none of these

xy=( x+y )^n and dy/dx = y/x then n= 1 b. 2 c. 3 d. 4

Determine n if (i) ^2n C_2:^n C_2=12 :1 (ii) ^2n C_3:^n C_3=11 :1

Determine n if (i) ^2n C_2:^n C_2=12 :1 (ii) ^2n C_3:^n C_3=11 :1

Determine n if (i) ^2n C_2:^n C_2=12 :1 (ii) ^2n C_3:^n C_3=11 :1

((1 + ""^nC_1 + ""^nC_2 + ""^nC_3+…….+nC_n)^2)/(1 + ""^(2n)C_1 + ""^(2n)C_2 + ""^(2n)C_3 + ……… + ""^(2n)C_(2n)) =

The arithmetic mean of 1,2,3,...n is (a) (n+1)/2 (b) (n-1)/2 (c) n/2 (d) n/2+1