Home
Class 12
MATHS
If all the words (with or without meanin...

If all the words (with or without meaning) having five letters, formed using the letters of the word SMALL and arranged as in a dictionary; then the position of the word SMALL is : (1) 46th (2) 59th (3) 52nd (4) 58th

A

59th

B

52nd

C

58th

D

64th

Text Solution

AI Generated Solution

The correct Answer is:
To find the position of the word "SMALL" when all possible five-letter words formed from the letters of "SMALL" are arranged in alphabetical order, we will follow these steps: ### Step 1: Arrange the letters in alphabetical order The letters in "SMALL" are A, L, L, M, S. Arranging them in alphabetical order gives us: A, L, L, M, S. ### Step 2: Count words starting with each letter before 'S' 1. **Words starting with 'A':** - Remaining letters: L, L, M, S - The number of arrangements = \( \frac{4!}{2!} = \frac{24}{2} = 12 \) (since L is repeated) 2. **Words starting with 'L':** - Remaining letters: A, L, M, S - The number of arrangements = \( 4! = 24 \) (no letters are repeated) 3. **Words starting with 'M':** - Remaining letters: A, L, L, S - The number of arrangements = \( \frac{4!}{2!} = \frac{24}{2} = 12 \) (since L is repeated) ### Step 3: Count words starting with 'S' Now, we need to consider words starting with 'S' since "SMALL" starts with 'S'. 1. **Words starting with 'S' and 'A':** - Remaining letters: L, L, M - The number of arrangements = \( \frac{3!}{2!} = \frac{6}{2} = 3 \) (since L is repeated) 2. **Words starting with 'S' and 'L':** - Remaining letters: A, L, M - The number of arrangements = \( 3! = 6 \) (no letters are repeated) 3. **Words starting with 'S' and 'M':** - Remaining letters: A, L, L - The next letter after 'S' is 'M', so we need to consider words starting with 'S' and 'M': - Remaining letters: A, L, L - The number of arrangements = \( \frac{3!}{2!} = \frac{6}{2} = 3 \) (since L is repeated) ### Step 4: Count the total number of words before "SMALL" Now, we can sum up all the arrangements before "SMALL": - Words starting with 'A': 12 - Words starting with 'L': 24 - Words starting with 'M': 12 - Words starting with 'S' and 'A': 3 - Words starting with 'S' and 'L': 6 Total = \( 12 + 24 + 12 + 3 + 6 = 57 \) ### Step 5: Find the position of "SMALL" Since "SMALL" is the next word after all the counted words, we add 1 to the total: - Position of "SMALL" = 57 + 1 = 58 Thus, the position of the word "SMALL" in the dictionary is **58th**. ### Final Answer: (4) 58th ---

To find the position of the word "SMALL" when all possible five-letter words formed from the letters of "SMALL" are arranged in alphabetical order, we will follow these steps: ### Step 1: Arrange the letters in alphabetical order The letters in "SMALL" are A, L, L, M, S. Arranging them in alphabetical order gives us: A, L, L, M, S. ### Step 2: Count words starting with each letter before 'S' 1. **Words starting with 'A':** - Remaining letters: L, L, M, S ...
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|16 Videos
  • PARABOLA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|36 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos

Similar Questions

Explore conceptually related problems

How many words, with or without meaning, can be formed by using the letters of the word ‘TRIANGLE’?

If all the letters of the word AGAIN be arranged as in a dictionary, what is the fiftieth word?

If all the letters of the word AGAIN be arranged as in a dictionary, what is the fiftieth word?

If all the letters of the word 'AGAIN' be arranged as in a dictionary, then fiftieth word is

How many words, with or without meaning, can be formed by using all the letters of the word DELHI using each letter exactly once?

If all the permutations of the lettters of the word INDIA are arranged as in a dictionary . What are the 49^(th) word ?

The letters of the word 'DELHI' are arranged in all possible ways as in a dictionary, the rank of the word 'DELHI' is

The letters of the word "MUMBAI" are arranged in all possible ways as in a dictionary, the rank of the word 'MUMBAI' is

The letters of the word 'MEERUT' are arranged in all possible ways as in a dictionary, then the rank of the word 'MEERUT' is

The number of 4 letter words (with or without meaning) that can be formed from the letter of the work EXAMINATION is

ARIHANT MATHS ENGLISH-PERMUTATIONS AND COMBINATIONS -Exercise (Questions Asked In Previous 13 Years Exam)
  1. In a shop, there are five types of ice-creams available. A child buys ...

    Text Solution

    |

  2. The number of seven digit integers, with sum of the digits equal to 10...

    Text Solution

    |

  3. From 6 different novels and 3 different dictionaries, 4 novels and ...

    Text Solution

    |

  4. There are two urns. Urn A has 3 distinct red balls and urn B has 9 ...

    Text Solution

    |

  5. Statement-1: The number of ways of distributing 10 identical balls in ...

    Text Solution

    |

  6. There are 10 points in a plane, out of these 6 are collinear. The numb...

    Text Solution

    |

  7. The total number of ways in which 5 balls of differert colours can be ...

    Text Solution

    |

  8. Let n denote the number of all n-digit positive integers formed by the...

    Text Solution

    |

  9. Let a(n) denote the number of all n-digit numbers formed by the digits...

    Text Solution

    |

  10. Assuming the balls to be identical except for difference in colours, t...

    Text Solution

    |

  11. Let Tn be the number of all possible triangles formed by joining ve...

    Text Solution

    |

  12. Consider the set of eight vector V={a hat i+b hat j+c hat k ; a ,bc in...

    Text Solution

    |

  13. A coin is tossed 3 times and the outcomes are recorded . how many poss...

    Text Solution

    |

  14. Let ngeq2 be integer. Take n distinct points on a circle and join each...

    Text Solution

    |

  15. Six cards and six envelopes are numbered 1, 2, 3, 4, 5, 6 and cards...

    Text Solution

    |

  16. The number of integers greater than 6,000 that can be formed, using...

    Text Solution

    |

  17. r

    Text Solution

    |

  18. If all the words (with or without meaning) having five letters, formed...

    Text Solution

    |

  19. A debate club consists of 6 girls and 4 boys. A team of 4 members is t...

    Text Solution

    |

  20. A man X has 7 friends, 4 of them are ladies and 3 are men. His wife Y ...

    Text Solution

    |