Home
Class 12
MATHS
If f(x)=(1)/((1-x)),g(x)=f{f(x)}andh(x)=...

If `f(x)=(1)/((1-x)),g(x)=f{f(x)}andh(x)=f[f{f(x)}]`. Then the value of f(x).g(x).h(x) is

A

6

B

-1

C

1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will first define the functions and then compute their values accordingly. ### Step 1: Define the function \( f(x) \) We are given: \[ f(x) = \frac{1}{1 - x} \] ### Step 2: Calculate \( g(x) = f(f(x)) \) To find \( g(x) \), we need to substitute \( f(x) \) into itself: \[ g(x) = f(f(x)) = f\left(\frac{1}{1 - x}\right) \] Now, we substitute \( \frac{1}{1 - x} \) into \( f(x) \): \[ g(x) = \frac{1}{1 - \frac{1}{1 - x}} \] To simplify this, we first find the denominator: \[ 1 - \frac{1}{1 - x} = \frac{(1 - x) - 1}{1 - x} = \frac{-x}{1 - x} \] Thus, \[ g(x) = \frac{1}{\frac{-x}{1 - x}} = \frac{1 - x}{-x} = \frac{x - 1}{x} \] ### Step 3: Calculate \( h(x) = f(g(x)) \) Now we need to find \( h(x) \): \[ h(x) = f(g(x)) = f\left(\frac{x - 1}{x}\right) \] Substituting \( \frac{x - 1}{x} \) into \( f(x) \): \[ h(x) = \frac{1}{1 - \frac{x - 1}{x}} = \frac{1}{\frac{x - (x - 1)}{x}} = \frac{1}{\frac{1}{x}} = x \] ### Step 4: Calculate the product \( f(x) \cdot g(x) \cdot h(x) \) Now we can find the product: \[ f(x) \cdot g(x) \cdot h(x) = \left(\frac{1}{1 - x}\right) \cdot \left(\frac{x - 1}{x}\right) \cdot x \] Simplifying this: \[ = \frac{1}{1 - x} \cdot \frac{x - 1}{x} \cdot x \] The \( x \) in the numerator and denominator cancels out: \[ = \frac{1}{1 - x} \cdot (x - 1) = \frac{-(1 - x)}{1 - x} = -1 \] ### Final Result Thus, the value of \( f(x) \cdot g(x) \cdot h(x) \) is: \[ \boxed{-1} \]

To solve the problem step by step, we will first define the functions and then compute their values accordingly. ### Step 1: Define the function \( f(x) \) We are given: \[ f(x) = \frac{1}{1 - x} \] ...
Promotional Banner

Topper's Solved these Questions

  • SETS, RELATIONS AND FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|11 Videos
  • SETS, RELATIONS AND FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|10 Videos
  • SEQUENCES AND SERIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • THE STRAIGHT LINES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|17 Videos

Similar Questions

Explore conceptually related problems

If f(x) = (1)/(1 -x) x ne 1 and g(x) = (x-1)/(x) , x ne0 , then the value of g[f(x)] is :

If f(x) = x^(2) and g(x) = (1)/(x^(3)) . Then the value of (f(x)+g(x))/(f(-x)-g(-x)) at x = 2 is

If f(x)=2x^(2)-4 and g(x)=2^(x) , the value of g(f(1)) is

f(x)=x^(2)+xg'(1)+g''(2)and g(x)=f(1)x^(2)+xf'(x)+f'(x). The value of f(3) is

If f(x) = (x + 1)/(x-1) , then the value of f{f(3)} is :

f(x)=(x-k)/(5) and g(x)=5x+7 . If f(g(x))=g(f(x)) , what is the value of k?

If function f(x)=x^(2)+e^(x//2) " and " g(x)=f^(-1)(x) , then the value of g'(1) is

If f(x)={(1-|x| ,, |x|lt=1),(0 ,, |x|>1):} and g(x)=f(x-1)+f(x+1), then find the value of int_(-3)^5g(x)dx .

Let f (x) and g (x) be two differentiable functions, defined as: f (x)=x ^(2) +xg'(1)+g'' (2) and g (x)= f (1) x^(2) +x f' (x)+ f''(x). The value of f (1) +g (-1) is:

If the function f(x)=x^3+e^(x/2) and g(x)=f ^(−1)(x) , then the value of g ′ (1) is