Home
Class 12
MATHS
Statement-1 If AuuB=AuuC and AnnB=AnnC, ...

Statement-1 If `AuuB=AuuC` and `AnnB=AnnC`, then B = C.
Statement-2 `Auu(BnnC)=(AuuB)nn(AuuC)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to analyze both statements and determine their validity step by step. ### Step 1: Analyze Statement 1 **Statement 1:** If \( A \cup B = A \cup C \) and \( A \cap B = A \cap C \), then \( B = C \). 1. **Given Sets:** - Let \( A = \{1, 2, 3, 4\} \) - Let \( B = \{4, 5, 6\} \) - Let \( C = \{4, 5, 6\} \) 2. **Calculate \( A \cup B \) and \( A \cup C \):** - \( A \cup B = \{1, 2, 3, 4\} \cup \{4, 5, 6\} = \{1, 2, 3, 4, 5, 6\} \) - \( A \cup C = \{1, 2, 3, 4\} \cup \{4, 5, 6\} = \{1, 2, 3, 4, 5, 6\} \) 3. **Check \( A \cap B \) and \( A \cap C \):** - \( A \cap B = \{1, 2, 3, 4\} \cap \{4, 5, 6\} = \{4\} \) - \( A \cap C = \{1, 2, 3, 4\} \cap \{4, 5, 6\} = \{4\} \) 4. **Conclusion for Statement 1:** - Since \( A \cup B = A \cup C \) and \( A \cap B = A \cap C \), we can conclude that \( B = C \). ### Step 2: Analyze Statement 2 **Statement 2:** \( A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \) 1. **Given Sets:** - Let \( A = \{1, 2, 3, 4\} \) - Let \( B = \{4, 5, 6\} \) - Let \( C = \{5, 6, 7\} \) 2. **Calculate \( B \cap C \):** - \( B \cap C = \{4, 5, 6\} \cap \{5, 6, 7\} = \{5, 6\} \) 3. **Calculate \( A \cup (B \cap C) \):** - \( A \cup (B \cap C) = \{1, 2, 3, 4\} \cup \{5, 6\} = \{1, 2, 3, 4, 5, 6\} \) 4. **Calculate \( A \cup B \) and \( A \cup C \):** - \( A \cup B = \{1, 2, 3, 4\} \cup \{4, 5, 6\} = \{1, 2, 3, 4, 5, 6\} \) - \( A \cup C = \{1, 2, 3, 4\} \cup \{5, 6, 7\} = \{1, 2, 3, 4, 5, 6, 7\} \) 5. **Calculate \( (A \cup B) \cap (A \cup C) \):** - \( (A \cup B) \cap (A \cup C) = \{1, 2, 3, 4, 5, 6\} \cap \{1, 2, 3, 4, 5, 6, 7\} = \{1, 2, 3, 4, 5, 6\} \) 6. **Conclusion for Statement 2:** - Since both sides are equal, \( A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \) is true. ### Final Conclusion - **Statement 1 is true:** If \( A \cup B = A \cup C \) and \( A \cap B = A \cap C \), then \( B = C \). - **Statement 2 is true:** \( A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \).

To solve the given problem, we need to analyze both statements and determine their validity step by step. ### Step 1: Analyze Statement 1 **Statement 1:** If \( A \cup B = A \cup C \) and \( A \cap B = A \cap C \), then \( B = C \). 1. **Given Sets:** - Let \( A = \{1, 2, 3, 4\} \) - Let \( B = \{4, 5, 6\} \) ...
Promotional Banner

Topper's Solved these Questions

  • SETS, RELATIONS AND FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|11 Videos
  • SETS, RELATIONS AND FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|10 Videos
  • SEQUENCES AND SERIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • THE STRAIGHT LINES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|17 Videos

Similar Questions

Explore conceptually related problems

Statement-1 P(A)nnP(B)=P(AnnB) , where P(A) is power set of set A. Statement-2 P(A)uuP(B)=P(AuuB) .

Statement 1: If AnnB=phi then n((AxxB)nn(BxxA))=0 Statement 2: A-(BuuC)=AnnB^'nnC^'

If A={2} , B={5} , C={3,4,6} , then verify that Axx(BnnC)=(AxxB)nn(AxxC) .

Let Aa n dB be two independent events. Statement 1: If P(A)=0. 4a n dP(Auu barB )=0. 9 ,t h e nP(B)i s1//4. Statement 2: If Aa n dB are independent, then P(AnnB)=P(A)P(B)dot .

For any three sets A, B, and C Ann(B-C)=(AnnB)-(AnnC)

Let A={1,2,4,5}\ B={2,3,5,6}C={4,5,6,7} . Verify the following identities: Auu(BnnC)=(AuuB)nn(AuuC)

If A, B are two sets, prove that AuuB=(A-B)uu(B-A)uu(AnnB) . Hence or otherwise prove that n(AuuB)=n(A)+n(B)-n(AnnB) where, n(A) denotes the number of elements in A.

Statement 1: The probability of drawing either an ace or a king from a pack of card in a single draw is 2/13. Statement 2: for two events Aa n dB which are not mutually exclusive, P(AuuB)=P(A)+P(B)-P(AnnB)dot

For any two sets A and B, (A-B)uu(B-A)=? a. (A-B)uuA b. (B-A)uuB c. (AuuB)-(AnnB) d. (AuuB)nn(AnnB)

If Aa n dB are two sets, then (A-B)uu(AnnB) is equal to (a) AuuB (b) AnnB (c) A (d) B