Home
Class 12
MATHS
If f(x)=(x-1)/(x+1) , then f(f(a x)) in ...

If `f(x)=(x-1)/(x+1)` , then `f(f(a x))` in terms of `f(x)` is equal to `(a)(f(x)-1)/(a(f(x)-1))` (b) `(f(x)+1)/(a(f(x)-1))` `(f(x)-1)/(a(f(x)+1))` (d) `(f(x)+1)/(a(f(x)+1))`

A

`(f(x)+a)/(1+af(x))`

B

`((a-1)f(x)+a+1)/((a+1)f(x)+a-1)`

C

`((a+1)f(x)+a-1)/((a-1)f(x)+a+1)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( f(f(ax)) \) in terms of \( f(x) \), where \( f(x) = \frac{x-1}{x+1} \). ### Step 1: Find \( f(ax) \) Given: \[ f(x) = \frac{x-1}{x+1} \] We first find \( f(ax) \): \[ f(ax) = \frac{ax - 1}{ax + 1} \] ### Step 2: Substitute \( f(ax) \) into \( f \) Next, we need to find \( f(f(ax)) \): \[ f(f(ax)) = f\left(\frac{ax - 1}{ax + 1}\right) \] ### Step 3: Use the definition of \( f \) Using the definition of \( f \): \[ f\left(\frac{ax - 1}{ax + 1}\right) = \frac{\frac{ax - 1}{ax + 1} - 1}{\frac{ax - 1}{ax + 1} + 1} \] ### Step 4: Simplify the numerator The numerator becomes: \[ \frac{ax - 1}{ax + 1} - 1 = \frac{ax - 1 - (ax + 1)}{ax + 1} = \frac{ax - 1 - ax - 1}{ax + 1} = \frac{-2}{ax + 1} \] ### Step 5: Simplify the denominator The denominator becomes: \[ \frac{ax - 1}{ax + 1} + 1 = \frac{ax - 1 + (ax + 1)}{ax + 1} = \frac{ax - 1 + ax + 1}{ax + 1} = \frac{2ax}{ax + 1} \] ### Step 6: Combine the results Now we can combine the numerator and denominator: \[ f(f(ax)) = \frac{\frac{-2}{ax + 1}}{\frac{2ax}{ax + 1}} = \frac{-2}{2ax} = \frac{-1}{ax} \] ### Step 7: Substitute \( x \) in terms of \( f(x) \) From the earlier steps, we found that: \[ x = \frac{1 + f(x)}{1 - f(x)} \] Substituting this into our expression for \( f(f(ax)) \): \[ f(f(ax)) = \frac{-1}{a \cdot \frac{1 + f(x)}{1 - f(x)}} = \frac{-(1 - f(x))}{a(1 + f(x))} \] ### Final Result Thus, we can express \( f(f(ax)) \) in terms of \( f(x) \): \[ f(f(ax)) = \frac{f(x) - 1}{a(f(x) + 1)} \] ### Conclusion The correct answer is: \[ \boxed{\frac{f(x) - 1}{a(f(x) + 1)}} \]
Promotional Banner

Topper's Solved these Questions

  • SETS, RELATIONS AND FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|39 Videos
  • SETS, RELATIONS AND FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|3 Videos
  • SETS, RELATIONS AND FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|10 Videos
  • SEQUENCES AND SERIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • THE STRAIGHT LINES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|17 Videos

Similar Questions

Explore conceptually related problems

If f(x) = (x-1)/(x+1) then f(ax) in term of f(x) is equal to

If f(x)=(x-1)/(x+1) then f(2x) is equal to

If f(x)=(x-1)/(x+1) then f(2x) is equal to

If f(x) = (x-1)/(x+1) , then f(2) is equal to

If f(x) -1/x , then f(a)+ f((1)/(a))=

If f(x)=(x+1)/(x-1) then the value of f(f(f(x))) is :

If f (x) =(x-1)/(x+1), then prove that f{f(x)}=-1/x.

f(x)=(1)/(x) and f(-x)=(1)/(-x) .

If f(x) = (x + 1)/(x-1) , then the value of f{f(3)} is :

If f(x)=int_(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to