Home
Class 12
MATHS
Let the function f: R-{-b}->R-{1} be def...

Let the function `f: R-{-b}->R-{1}` be defined by `f(x)=(x+a)/(x+b)` , `a!=b` , then `f` is one-one but not onto (b) `f` is onto but not one-one (c) `f` is both one-one and onto (d) none of these

A

f is one-one but not onto

B

f is onto but not one-one

C

f is both one-one and onto

D

`f^(-1)(2) = a - 2b`

Text Solution

Verified by Experts

The correct Answer is:
C, D

`f:R-{-b}rarrR-{1}`
`f(x)=(x+a)/(x+b)" "[aneb]`
Let `x_(1), x_(2) in D_(f)`
`f(x_(1)) = f(x_(2))`
implies `(x_(1)+a)/(x_(1)+b)=(x_(2)+a)/(x_(2)+b)`
`impliesx_(1)x_(2)+bx_(1)+ax_(2)+ab=x_(1)x_(2)+ax_(1)+bx_(2)+ab`
`impliesb(x_(1)-x_(2))=a(x_(1)-x_(2))`
`implies (x_(1)-x_(2))(b-a)=0`
`implies x_(1)=x_(2)" "[because aneb]`
`therefore` f is one-one function.
Now, let `y=(x+a)/(x+b)`
`xy+by=x+a`
`x(y-1)=a-by`
`x=(a-by)/(y-1)andf^(-1)(y)=(a-by)/(y-1)`
`because y inR-{1}`
`therefore` x is defined, `AAy inR-{1}`
`f^(-1)(2)=(a-2b)/(2-1)=a-2b`
Promotional Banner

Topper's Solved these Questions

  • SETS, RELATIONS AND FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|6 Videos
  • SETS, RELATIONS AND FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|5 Videos
  • SETS, RELATIONS AND FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|39 Videos
  • SEQUENCES AND SERIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • THE STRAIGHT LINES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|17 Videos

Similar Questions

Explore conceptually related problems

Let the function f: R-{-b}->R-{1} be defined by f(x)=(x+a)/(x+b) , a!=b , then (a) f is one-one but not onto (b) f is onto but not one-one (c) f is both one-one and onto (d) none of these

If a function f:[2,\ oo)->R defined by f(x)=(x-1)(x-2)(x-3) is (a) one-one but not onto (b) onto but not one-one (c) both one and onto (d) neither one-one nor onto

Let f: R->R be a function defined by f(x)=(x^2-8)/(x^2+2) . Then, f is (a) one-one but not onto (b) one-one and onto (c) onto but not one-one (d) neither one-one nor onto

The function f:R rarr R defined as f(x)=(3x^2+3x-4)/(3+3x-4x^2) is : (a) One to one but not onto (b) Onto but not one to one (c) Both one to one and onto (d)Neither one to one nor onto

Let the function f: RrarrR be defined by f(x)=2x+sinx for x in Rdot Then f is (a)one-to-one and onto (b)one-to-one but not onto (c)onto but not-one-to-one (d)neither one-to-one nor onto

f: R->R is defined by f(x)=(e^x^2-e^-x^2)/(e^x^2+e^-x^2) is (a) one-one but not onto (b) many-one but onto (c) one-one and onto (d) neither one-one nor onto

Let f:RtoR be a function defined by f(x)=(x-m)/(x-n) , where mnen . Then show that f is one-one but not onto.

Show that the function f: R->{x in R :-1ltxlt1} defined by f(x)=x/(1+|x|),x in R is one-one and onto function.

The function f:[0,\ oo)->R given by f(x)=x/(x+1) is (a) one-one and onto (b) one-one but not onto (c) onto but not one-one (d) neither one-one nor onto

Let f: R->R be defined as f(x)=x^4 . Choose the correct answer. (A) f is one-one onto (B) f is many-one onto (C) f is one-one but not onto (D) f is neither one-one nor onto