Home
Class 12
MATHS
If X={4^(n)-3n-1:ninN}andy={9(n-1):ninN}...

If `X={4^(n)-3n-1:ninN}andy={9(n-1):ninN}`, then `X uu Y` equals

A

X

B

Y

C

N

D

Y - X

Text Solution

Verified by Experts

The correct Answer is:
B

Since, `4^(n)-3n-1=(1+3)^(n)-3n-1`
`=(1+.^(n)C_(1).3+.^(n)C_(2).3^(2)+.^(n)C_(3).3^(3)+...+.^(n)C_(n).3^(n))-3n-1`
`=3^(2)(.^(n)C_(2)+.^(n)C_(3).3+...+.^(n)C_(n).3^(n-2))`
`implies 4^(n)-3n-1` is a multiple of 9 for `n ge 2`
For `n = 1, 4^(n) - 3n - 1 = 4 - 3 - 1 = 0`
For `n = 2, 4^(n) - 3n - 1 = 16 - 6 - 1 = 9`
`therefore 4^(n) - 3n - 1` is multiple of 9 for all `n in N`.
It is clear that X contains elements, which are multiples of 9 and Y contains all multiples of 9.
`therefore XsubeY " i.e., " XuuY=Y`
Promotional Banner

Topper's Solved these Questions

  • SETS, RELATIONS AND FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|15 Videos
  • SEQUENCES AND SERIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • THE STRAIGHT LINES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|17 Videos

Similar Questions

Explore conceptually related problems

If X={4^(n)-3n-1 : n in N} and Y={9(n-1) : n in N} , then

If X={4^(n)-3n-1:n in N} and {9(n-1):n in N} , the prove that X sub Y .

If X={8^(n)-7n-1,n in N} and Y={49(n-1):n inN}, then prove that X sube Y .

If X= {8^n-7n-1,n in N} and Y= {49(n-1);ninN} , then prove that X is a subset of Y

If N_(a)={an:ninN} , then N_(5) nn N_(7) equals

If A={x:x=3^(n)-2n-1, n in N} and B={x:x = 4(n-1), n in N} . Then

If A={x:x=2n+1,nin Z}and B={x:x = 2n ,ninn Z} then A cup B=

If A=(x : x=4n+1,nle5,n in N} and B={3n : n le 8, n in N} , then find (A-(A-B)) .

If P_(n) denotes the product of all the coefficients of (1+x)^(n) and 9!P_(n+1)=10^(9)P_(n) then n is equal to

If {:X=[(3,-4),(1,-1)]:} , the value of X^n is equal to