Home
Class 12
MATHS
Vectors drawn the origin O to the points...

Vectors drawn the origin `O` to the points `A , B and C` are respectively ` vec a , vec b and vec4a- vec3bdot` find ` vec A C and vec B Cdot`

Text Solution

AI Generated Solution

To solve the problem, we need to find the vectors \( \vec{AC} \) and \( \vec{BC} \) given the position vectors of points \( A \), \( B \), and \( C \). ### Step-by-Step Solution: 1. **Identify the Position Vectors**: - The position vector of point \( A \) is given as \( \vec{a} \). - The position vector of point \( B \) is given as \( \vec{b} \). - The position vector of point \( C \) is given as \( \vec{c} = 4\vec{a} - 3\vec{b} \). ...
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|7 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|17 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

Vectors drawn the origin O to the points A , Ba n d C are respectively vec a , vec ba n d vec4a- vec3bdot find vec A Ca n d vec B Cdot

If | vec a|=2,|vec b|=5 and | vec a xx vec b|=8, find vec a . vec bdot

vec a , vec b and vec c are the position vectors of points A ,B and C respectively, prove that : vec a× vec b+ vec b× vec c+ vec c× vec a is vector perpendicular to the plane of triangle A B Cdot

If | vec a|=2| vec b|=5 and | vec axx vec b|=8, then find the value of vec a . vec bdot

If vec a ,\ vec b ,\ vec c are position vectors o the point A ,\ B ,\ a n d\ C respectively, write the value of vec A B+ vec B C+ vec A Cdot

If the position vectors of the points A(3,4),B(5,-6) and C (4,-1) are vec a , vec b , vec c respectively compute vec a+2 vec b-3 vec c

If the position vectors of the points A(3,4),B(5,-6) and (4,-1) are vec a , vec b , vec c respectively compute vec a+2 vec b-3 vec c

If | vec a|=8,| vec b|=3 and | vec a x vec b|=12 , find the angle between vec a and vec bdot

If the vectors vec a , vec b ,a n d vec c form the sides B C ,C Aa n dA B , respectively, of triangle A B C ,t h e n (a) vec adot vec b+ vec bdot vec c+ vec c dot vec a=0 (b) vec axx vec b= vec bxx vec c= vec cxx vec a (c). vec adot vec b= vec bdot vec c= vec c dot vec a (d). vec axx vec b+ vec bxx vec c+ vec cxx vec a=0

Find the angle between two vectors vec a\ a n d\ vec b , if | vec axx vec b|= vec adot vec bdot