Home
Class 12
MATHS
Let alpha, beta, gamma be distinct real ...

Let `alpha, beta, gamma` be distinct real numbers. The points with position vectors `alpha hati + beta hatj +gamma hat k , beta hati + gamma hatj +alpha hat k , gamma hati +alpha hatj + beta hatk`

A

are collinear

B

form an equilateral triangle

C

form a scalene triangle

D

form a right angled triangle

Text Solution

AI Generated Solution

To solve the problem, we need to analyze the position vectors given and determine the relationship between the points represented by these vectors. Let's denote the three points as follows: 1. Point A with position vector \( \vec{A} = \alpha \hat{i} + \beta \hat{j} + \gamma \hat{k} \) 2. Point B with position vector \( \vec{B} = \beta \hat{i} + \gamma \hat{j} + \alpha \hat{k} \) 3. Point C with position vector \( \vec{C} = \gamma \hat{i} + \alpha \hat{j} + \beta \hat{k} \) ### Step 1: Check for Collinearity ...
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|7 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|17 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

Let alpha, beta and gamma be distinct real numbers. The points whose position vector's are alpha hat i + beta hat j+gamma hat k; beta hat i+gamma hat j+alpha hat k and gamma hat i+alpha hat j+beta hat k a. are collinear. b. forms an equilateral triangle. c. forms a scalene triangle. d. forms a right angled triangle.

The points with position vectors alpha hati+hatj+hatk, hati-hatj-hatk, hati+2hatj-hatk, hati+hatj+betahatk are coplanar if

The vector cos alpha cos beta hati + cos alpha sin beta hatj + sin alpha hatk is a

If alpha , beta , gamma are the roots of x^3 -3x +1=0 then the equation whose roots are alpha - (1)/( beta gamma) , beta - (1)/( gamma alpha ) , gamma - (1)/( alpha beta ) is

cos alpha sin (beta-gamma) + cos beta sin (gamma-alpha) + cos gamma sin (alpha-beta)=

If alpha , beta , gamma are the roots of the equation x^3 +px^2 + qx +r=0 then the coefficient of x in cubic equation whose roots are alpha ( beta + gamma ) , beta ( gamma + alpha) and gamma ( alpha + beta) is

If alpha + beta + gamma = π/2 and cot alpha, cot beta, cot gamma are in Ap. Then cot alpha. Cot gamma

If cos^(-1) alpha + cos^(-1) beta + cos^(-1) gamma = 3pi , then alpha (beta + gamma) + beta(gamma + alpha) + gamma(alpha + beta) equal to

If alpha , beta , gamma are the roots of x^3 + 2x^2 + 3x +8=0 then ( alpha + beta ) ( beta + gamma) ( gamma + alpha ) =

If alpha , beta , gamma are the roots of x^3 -7x + 6 =0 the equation whose roots are alpha + beta , beta + gamma , gamma + alpha is