Home
Class 12
MATHS
If the position vectors of the vertices ...

If the position vectors of the vertices of a triangle be `2hati+4hatj-hatk,4hati+5hatj+hatk and 3 hati+6hatj-3hatk`, then the triangle is

A

right angled

B

isosceles

C

equilateral

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine the type of triangle formed by the given position vectors of its vertices, we will follow these steps: ### Given Position Vectors: - Vertex A: \( \vec{A} = 2\hat{i} + 4\hat{j} - \hat{k} \) - Vertex B: \( \vec{B} = 4\hat{i} + 5\hat{j} + \hat{k} \) - Vertex C: \( \vec{C} = 3\hat{i} + 6\hat{j} - 3\hat{k} \) ### Step 1: Calculate the vectors AB, BC, and CA 1. **Vector AB**: \[ \vec{AB} = \vec{B} - \vec{A} = (4\hat{i} + 5\hat{j} + \hat{k}) - (2\hat{i} + 4\hat{j} - \hat{k}) \] \[ = (4 - 2)\hat{i} + (5 - 4)\hat{j} + (1 + 1)\hat{k} = 2\hat{i} + 1\hat{j} + 2\hat{k} \] 2. **Vector BC**: \[ \vec{BC} = \vec{C} - \vec{B} = (3\hat{i} + 6\hat{j} - 3\hat{k}) - (4\hat{i} + 5\hat{j} + \hat{k}) \] \[ = (3 - 4)\hat{i} + (6 - 5)\hat{j} + (-3 - 1)\hat{k} = -1\hat{i} + 1\hat{j} - 4\hat{k} \] 3. **Vector CA**: \[ \vec{CA} = \vec{A} - \vec{C} = (2\hat{i} + 4\hat{j} - \hat{k}) - (3\hat{i} + 6\hat{j} - 3\hat{k}) \] \[ = (2 - 3)\hat{i} + (4 - 6)\hat{j} + (-1 + 3)\hat{k} = -1\hat{i} - 2\hat{j} + 2\hat{k} \] ### Step 2: Calculate the magnitudes of the vectors 1. **Magnitude of AB**: \[ |\vec{AB}| = \sqrt{(2)^2 + (1)^2 + (2)^2} = \sqrt{4 + 1 + 4} = \sqrt{9} = 3 \] 2. **Magnitude of BC**: \[ |\vec{BC}| = \sqrt{(-1)^2 + (1)^2 + (-4)^2} = \sqrt{1 + 1 + 16} = \sqrt{18} = 3\sqrt{2} \] 3. **Magnitude of CA**: \[ |\vec{CA}| = \sqrt{(-1)^2 + (-2)^2 + (2)^2} = \sqrt{1 + 4 + 4} = \sqrt{9} = 3 \] ### Step 3: Determine the type of triangle Now we have: - \( |\vec{AB}| = 3 \) - \( |\vec{BC}| = 3\sqrt{2} \) - \( |\vec{CA}| = 3 \) Since \( |\vec{AB}| = |\vec{CA}| \), triangle ABC is an **isosceles triangle**. ### Step 4: Check if it is a right triangle To check if triangle ABC is also a right triangle, we can apply the Pythagorean theorem: \[ |\vec{BC}|^2 = |\vec{AB}|^2 + |\vec{CA}|^2 \] Calculating: \[ (3\sqrt{2})^2 = 3^2 + 3^2 \] \[ 18 = 9 + 9 \] \[ 18 = 18 \] Since the equation holds true, triangle ABC is also a **right triangle**. ### Conclusion The triangle formed by the given position vectors is both an **isosceles triangle** and a **right triangle**. ---

To determine the type of triangle formed by the given position vectors of its vertices, we will follow these steps: ### Given Position Vectors: - Vertex A: \( \vec{A} = 2\hat{i} + 4\hat{j} - \hat{k} \) - Vertex B: \( \vec{B} = 4\hat{i} + 5\hat{j} + \hat{k} \) - Vertex C: \( \vec{C} = 3\hat{i} + 6\hat{j} - 3\hat{k} \) ### Step 1: Calculate the vectors AB, BC, and CA ...
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|7 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|17 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

The position vectors of the vertices A,B and C of a triangle are hati-hatj-3hatk,2hati+hatj-2hatk and -5hati+2hatj-6hatk , respectively. The length of the bisector AD of the angleBAC , where D is on the segment BC, is

If the position vectors of the vertices of a triangle of a triangle are 2 hati - hatj + hatk , hati - 3 hatj - 5 hatk and 3 hati -4 hatj - 4 hatk , then the triangle is

Let ABC be a triangle the position vectors of whose vertices are respectively hati+2hatj+4hatk, -2hati+2hatj+hatk and 2hati+4hatj-3hatk . Then the /_\ABC is (A) isosceles (B) equilateral (C) righat angled (D) none of these

Find the perimeter of a triangle with sides 3hati+4hatj+5hatk,4hati-3hatj-5hatk and 7 hati+hatj .

If the position vectors of the three points A,B,C are 2hati+4hatj-hatk, hati+2hatj-3hatk and 3hati+hatj+2hatk respectively, find a vector perpendicular to the plane ABC.

Two sides of a triangle are given by hati+hatj+hatk and -hati+2hatj+3hatk then area of triangle is

The position vectors of the sides of triangle are 3hati+4hatj+5hatk, hati+7hatk and 5hati+5hatk . The distance between the circumcentre and the ortho centre is

If the position vectors of the vertices A,B and C of a DeltaABC are 7hatj+10k,-hati+6hatj+6hatk and -4hati+9hatj+6hatk , respectively, the triangle is

The position vectors of the points A, B, C are 2 hati + hatj - hatk , 3 hati - 2 hatj + hatk and hati + 4hatj - 3 hatk respectively . These points

The position vectors of the points A, B, C are 2 hati + hatj - hatk , 3 hati - 2 hatj + hatk and hati + 4hatj - 3 hatk respectively . These points