Home
Class 12
MATHS
If vec a , vec b are any two vectors, t...

If ` vec a , vec b` are any two vectors, then give the geometrical interpretation of relation `| vec a+ vec b|=| vec a- vec b|`

Text Solution

Verified by Experts

Let OA=a and AB=b. completing the parallelogram OABC.

Then, OC=b and CB=a
from `DeltaOAB`, we have
`OA+AB=Obimpliesa+b=OB` . . . (i)
From `DeltaOCA,` we have
`OC+CA=OA`
`impliesb+CA=aimpliesCA=a-b` . . . (ii)
Clearly, `|a+b|=|a-b|implies |OB|=|CA|`
Diagonals of parallelogram OABC are qual.
OABC is a rectangle.
`implies OA bot OC implies a bot b`.
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|7 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|17 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

If vec a , vec b are two vectors ,then which of the following statements is/ are correct : | vec a|=| vec b| =>vec a=+- vec b

If vec a , vec b are two vectors, then which of the following statements is/ are correct :: | vec a|=| vec b| =>vec a= vec b

If vec a , vec b are two vectors, then which of the following statements is/ are correct : vec a=- vec b =>| vec a|=| vec b|

If vec(A) and vec(B) are two vectors, then the correct relation is :

If vec a , vec b are two vectors, then write the truth value of the following statements: vec a=- vec b| vec a|=| vec b| | vec a|=| vec b| vec a=+- vec b | vec a|=| vec b| vec a= vec b

If vec a , vec b are two non-collinear vectors, prove that the points with position vectors vec a+ vec b , vec a- vec b and vec a+lambda vec b are collinear for all real values of lambdadot

If vec a , vec b are two non-collinear vectors, prove that the points with position vectors vec a+ vec b , vec a- vec b and vec a+lambda vec b are collinear for all real values of lambdadot

If vec a and vec b are two vectors of the same magnitude inclined at an angle of 30^0 such that vec adot vec b=3, find | vec a|,| vec b| .

If vec a and vec b are two vectors, then prove that ( vec axx vec b)^2=|[vec a.vec a,vec a.vec b],[vec b.vec a,vec b.vec b]| .

For any two non zero vectors write the value of (| vec a+ vec b|^2+| vec a- vec b|^2)/(| vec a|^2+ | vec b"|^2)