Home
Class 12
MATHS
The vector vec c , directed along the ...

The vector ` vec c `, directed along the internal bisector of the angle between the vectors `vec a = 7 hati - 4 hatj - 4hatk and vecb = -2hati - hatj + 2 hatk " with " |vec c| = 5 sqrt(6),` is

A

(a) `(5)/(3)(hati-7hatj+2hatk)`

B

(b) `(5)/(3)(5hati+5hatj+2hatk)`

C

(c) `(5)/(3)(hati+7hatj+2hatk)`

D

(d) `(5)/(3)(-5hati+5hatj+2hatk)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the vector \( \vec{c} \) directed along the internal bisector of the angle between the vectors \( \vec{a} \) and \( \vec{b} \), we follow these steps: ### Step 1: Define the vectors Given: \[ \vec{a} = 7 \hat{i} - 4 \hat{j} - 4 \hat{k} \] \[ \vec{b} = -2 \hat{i} - \hat{j} + 2 \hat{k} \] ### Step 2: Calculate the magnitudes of \( \vec{a} \) and \( \vec{b} \) The magnitude of \( \vec{a} \): \[ |\vec{a}| = \sqrt{7^2 + (-4)^2 + (-4)^2} = \sqrt{49 + 16 + 16} = \sqrt{81} = 9 \] The magnitude of \( \vec{b} \): \[ |\vec{b}| = \sqrt{(-2)^2 + (-1)^2 + 2^2} = \sqrt{4 + 1 + 4} = \sqrt{9} = 3 \] ### Step 3: Find the unit vectors \( \hat{a} \) and \( \hat{b} \) The unit vector \( \hat{a} \): \[ \hat{a} = \frac{\vec{a}}{|\vec{a}|} = \frac{7 \hat{i} - 4 \hat{j} - 4 \hat{k}}{9} = \frac{7}{9} \hat{i} - \frac{4}{9} \hat{j} - \frac{4}{9} \hat{k} \] The unit vector \( \hat{b} \): \[ \hat{b} = \frac{\vec{b}}{|\vec{b}|} = \frac{-2 \hat{i} - \hat{j} + 2 \hat{k}}{3} = -\frac{2}{3} \hat{i} - \frac{1}{3} \hat{j} + \frac{2}{3} \hat{k} \] ### Step 4: Find the direction of the internal bisector The direction of the internal bisector \( \vec{c} \) can be expressed as: \[ \vec{c} = k (\hat{a} + \hat{b}) \] where \( k \) is a constant. ### Step 5: Calculate \( \hat{a} + \hat{b} \) \[ \hat{a} + \hat{b} = \left( \frac{7}{9} - \frac{2}{3} \right) \hat{i} + \left( -\frac{4}{9} - \frac{1}{3} \right) \hat{j} + \left( -\frac{4}{9} + \frac{2}{3} \right) \hat{k} \] Calculating each component: - For \( \hat{i} \): \[ \frac{7}{9} - \frac{2}{3} = \frac{7}{9} - \frac{6}{9} = \frac{1}{9} \] - For \( \hat{j} \): \[ -\frac{4}{9} - \frac{1}{3} = -\frac{4}{9} - \frac{3}{9} = -\frac{7}{9} \] - For \( \hat{k} \): \[ -\frac{4}{9} + \frac{2}{3} = -\frac{4}{9} + \frac{6}{9} = \frac{2}{9} \] Thus, \[ \hat{a} + \hat{b} = \frac{1}{9} \hat{i} - \frac{7}{9} \hat{j} + \frac{2}{9} \hat{k} \] ### Step 6: Express \( \vec{c} \) \[ \vec{c} = k \left( \frac{1}{9} \hat{i} - \frac{7}{9} \hat{j} + \frac{2}{9} \hat{k} \right) \] ### Step 7: Find the magnitude of \( \vec{c} \) The magnitude of \( \vec{c} \) is given as \( 5 \sqrt{6} \): \[ |\vec{c}| = |k| \cdot \frac{1}{9} \sqrt{1^2 + (-7)^2 + 2^2} = |k| \cdot \frac{1}{9} \sqrt{1 + 49 + 4} = |k| \cdot \frac{1}{9} \sqrt{54} = |k| \cdot \frac{3\sqrt{6}}{9} = |k| \cdot \frac{\sqrt{6}}{3} \] Setting this equal to \( 5 \sqrt{6} \): \[ |k| \cdot \frac{\sqrt{6}}{3} = 5 \sqrt{6} \] ### Step 8: Solve for \( k \) \[ |k| = 5 \cdot 3 = 15 \] ### Step 9: Substitute \( k \) back into \( \vec{c} \) \[ \vec{c} = 15 \left( \frac{1}{9} \hat{i} - \frac{7}{9} \hat{j} + \frac{2}{9} \hat{k} \right) = \frac{15}{9} \hat{i} - \frac{105}{9} \hat{j} + \frac{30}{9} \hat{k} \] Simplifying: \[ \vec{c} = \frac{5}{3} \hat{i} - 7 \hat{j} + \frac{10}{3} \hat{k} \] ### Final Answer Thus, the vector \( \vec{c} \) is: \[ \vec{c} = \frac{5}{3} \hat{i} - 7 \hat{j} + \frac{10}{3} \hat{k} \]

To find the vector \( \vec{c} \) directed along the internal bisector of the angle between the vectors \( \vec{a} \) and \( \vec{b} \), we follow these steps: ### Step 1: Define the vectors Given: \[ \vec{a} = 7 \hat{i} - 4 \hat{j} - 4 \hat{k} \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|7 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|17 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

Find the angle between the vectors veca = 6 hati + 2 hatj + 3 hatk, vecb = 2 hati - 9 hatj + 6 hatk

Given two vectors veca=-hati + 2hatj + 2hatk and vecb =- 2hati + hatj + 2hatk find |vec a xx vec b|

The angle between the two vectors vecA=hati+2hatj-hatk and vecB=-hati+hatj-2hatk

Find the angle 'theta' between the vector veca=2hati+3hatj-4hatk and vecb=3hati-2hatj+4hatk .

Find the angle between the vectors: vecA=hati-2hatj-5hatkandvecB=2hati+hatj-4hatk

Find the vector of magnitude 3, bisecting the angle between the vectors veca=2hati+hatj-hatk and vecb=hati-2hatj+hatk .

The angle between the two vectors vecA=2hati+3hatj+4hatk and vecB=1hati+2hatj-3hatk will be :

The angles between the two vectors vecA=3hati+4hatj+5hatk and vecB=3hati+4hatj-5hatk will be

If theta is the angle between the vectors a=2hati+2hatj-hatk and b=6hati-3hatj+2hatk , then

Find a unit vector perpendicular to each one of the vectors vec a =4hati -hatj +3hatk and vecb =3 hati +2hatj -hatk