Home
Class 12
MATHS
The points with position vectors 60hati+...

The points with position vectors `60hati+3hatj,40hati-8hatj, ahati-52hatj` are collinear if (A) `a=-40` (B) `a=40` (C) `a=20` (D) none of these

A

`-40`

B

`40`

C

20

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( a \) for which the points with position vectors \( 60\hat{i} + 3\hat{j} \), \( 40\hat{i} - 8\hat{j} \), and \( a\hat{i} - 52\hat{j} \) are collinear, we can follow these steps: ### Step 1: Define the position vectors Let: - \( \vec{A} = 60\hat{i} + 3\hat{j} \) - \( \vec{B} = 40\hat{i} - 8\hat{j} \) - \( \vec{C} = a\hat{i} - 52\hat{j} \) ### Step 2: Use the collinearity condition For points \( A \), \( B \), and \( C \) to be collinear, the vector \( \vec{C} - \vec{A} \) must be a scalar multiple of the vector \( \vec{B} - \vec{A} \). This can be expressed as: \[ \vec{C} - \vec{A} = k(\vec{B} - \vec{A}) \] for some scalar \( k \). ### Step 3: Calculate the vectors Calculate \( \vec{C} - \vec{A} \): \[ \vec{C} - \vec{A} = (a\hat{i} - 52\hat{j}) - (60\hat{i} + 3\hat{j}) = (a - 60)\hat{i} - (52 + 3)\hat{j} = (a - 60)\hat{i} - 55\hat{j} \] Calculate \( \vec{B} - \vec{A} \): \[ \vec{B} - \vec{A} = (40\hat{i} - 8\hat{j}) - (60\hat{i} + 3\hat{j}) = (40 - 60)\hat{i} - (8 + 3)\hat{j} = -20\hat{i} - 11\hat{j} \] ### Step 4: Set up the equation Now we have: \[ (a - 60)\hat{i} - 55\hat{j} = k(-20\hat{i} - 11\hat{j}) \] ### Step 5: Equate the components From the above equation, equate the coefficients of \( \hat{i} \) and \( \hat{j} \): 1. For \( \hat{i} \): \[ a - 60 = -20k \quad \text{(1)} \] 2. For \( \hat{j} \): \[ -55 = -11k \quad \text{(2)} \] ### Step 6: Solve for \( k \) From equation (2): \[ -55 = -11k \implies k = \frac{55}{11} = 5 \] ### Step 7: Substitute \( k \) back into equation (1) Now substitute \( k = 5 \) into equation (1): \[ a - 60 = -20(5) \implies a - 60 = -100 \] \[ a = -100 + 60 = -40 \] ### Conclusion Thus, the value of \( a \) for which the points are collinear is: \[ \boxed{-40} \]

To determine the value of \( a \) for which the points with position vectors \( 60\hat{i} + 3\hat{j} \), \( 40\hat{i} - 8\hat{j} \), and \( a\hat{i} - 52\hat{j} \) are collinear, we can follow these steps: ### Step 1: Define the position vectors Let: - \( \vec{A} = 60\hat{i} + 3\hat{j} \) - \( \vec{B} = 40\hat{i} - 8\hat{j} \) - \( \vec{C} = a\hat{i} - 52\hat{j} \) ...
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|7 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|17 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

The points with position vectors 10hati+3hatj,12hati-5hatj and ahati+11hatj are collinear, if a is equal to

If the points with position vectors 20 hati + p hatj , 5 hati - hatj and 10 hati - 13 hatj are collinear, then p =

If the points with position vectors 20 hati + p hatj , 5 hati - hatj and 10 hati - 13 hatj are collinear, then p =

The points with position vectors 60 i+3j ,40 i-8j ,a i-52 j are collinear if a. a=-40 b. a=40 c. a=20 d. none of these

Show that the vectors 2hati-3hatj+4hatk and -4hati+6hatj-8hatk are collinear.

If points hati+hatj, hati -hatj and p hati +qhatj+rhatk are collinear, then

The points with position vectors alpha hati+hatj+hatk, hati-hatj-hatk, hati+2hatj-hatk, hati+hatj+betahatk are coplanar if

If the four points with position vectors -2hati+hatj+hatk, hati+hatj+hatk, hatj-hatk and lamda hatj+hatk are coplanar then lamda= (A) 1 (B) 2/3 (C) -1 (D) 0

The vectors 2hati+hatj-4hatk and ahati+bhatj+chatk are perpendicular, if

The point having position vectors 2hati+3hatj+4hatk,3hati+4hatj+2hatk and 4hati+2hatj+3hatk are the vertices of