Home
Class 12
MATHS
If the vectors 4hati+11hatj+mhatk,7hati+...

If the vectors `4hati+11hatj+mhatk,7hati+2hatj+6hatk and hati+5hatj+4hatk` are coplanar, then m is equal to

A

38

B

0

C

10

D

`-10`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( m \) such that the vectors \( \mathbf{a} = 4\hat{i} + 11\hat{j} + m\hat{k} \), \( \mathbf{b} = 7\hat{i} + 2\hat{j} + 6\hat{k} \), and \( \mathbf{c} = \hat{i} + 5\hat{j} + 4\hat{k} \) are coplanar, we can use the condition that the scalar triple product (or box product) of the vectors must be equal to zero. ### Step 1: Write the vectors Let: \[ \mathbf{a} = 4\hat{i} + 11\hat{j} + m\hat{k} \] \[ \mathbf{b} = 7\hat{i} + 2\hat{j} + 6\hat{k} \] \[ \mathbf{c} = \hat{i} + 5\hat{j} + 4\hat{k} \] ### Step 2: Set up the determinant The condition for coplanarity can be expressed as: \[ \begin{vmatrix} 4 & 11 & m \\ 7 & 2 & 6 \\ 1 & 5 & 4 \end{vmatrix} = 0 \] ### Step 3: Calculate the determinant Calculating the determinant, we have: \[ = 4 \begin{vmatrix} 2 & 6 \\ 5 & 4 \end{vmatrix} - 11 \begin{vmatrix} 7 & 6 \\ 1 & 4 \end{vmatrix} + m \begin{vmatrix} 7 & 2 \\ 1 & 5 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} 2 & 6 \\ 5 & 4 \end{vmatrix} = (2 \cdot 4) - (6 \cdot 5) = 8 - 30 = -22 \) 2. \( \begin{vmatrix} 7 & 6 \\ 1 & 4 \end{vmatrix} = (7 \cdot 4) - (6 \cdot 1) = 28 - 6 = 22 \) 3. \( \begin{vmatrix} 7 & 2 \\ 1 & 5 \end{vmatrix} = (7 \cdot 5) - (2 \cdot 1) = 35 - 2 = 33 \) Substituting these values back into the determinant: \[ = 4(-22) - 11(22) + m(33) \] \[ = -88 - 242 + 33m \] \[ = 33m - 330 \] ### Step 4: Set the determinant to zero Setting the determinant equal to zero gives: \[ 33m - 330 = 0 \] ### Step 5: Solve for \( m \) \[ 33m = 330 \] \[ m = \frac{330}{33} = 10 \] Thus, the value of \( m \) is \( 10 \). ### Summary The value of \( m \) such that the vectors are coplanar is: \[ \boxed{10} \]

To determine the value of \( m \) such that the vectors \( \mathbf{a} = 4\hat{i} + 11\hat{j} + m\hat{k} \), \( \mathbf{b} = 7\hat{i} + 2\hat{j} + 6\hat{k} \), and \( \mathbf{c} = \hat{i} + 5\hat{j} + 4\hat{k} \) are coplanar, we can use the condition that the scalar triple product (or box product) of the vectors must be equal to zero. ### Step 1: Write the vectors Let: \[ \mathbf{a} = 4\hat{i} + 11\hat{j} + m\hat{k} \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|7 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|17 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

Show that the vectors hati-hatj-hatk,2hati+3hatj+hatk and 7hati+3hatj-4hatk are coplanar.

If the vectors 2hati-hatj+hatk,hati+2hatj-3hatk and 3hati+ahatj+5hatk are coplanar, the prove that a=-4.

Vectors 2hati+2hatj-2hatk,5hati+yhatj+hatk and -hati+2hatj+2hatk are coplanar then find the value of y.

The number of real values of a for which the vectors hati+2hatj+hatk, ahati+hatj+2hatk and hati+2hatj+ahatk are coplanar is

The sum of the distinct real values of mu , for which the vectors, mu hati + hatj + hatk, hati + mu hatj + hatk, hati + hatj + muhatk are coplanar, is

The vectors hati+2hatj+3hatk,lamdahati+4hatj+7hatk,-3hati-2hatj-5hatk are collinear, of lamda is equal to (A)3 (B)4 (C)5 (D)6

The vectors lambdahati + hatj + 2hatk, hati + lambdahatj +hatk, 2hati - hatj + 2hatk are coplanar, if:

Find lambda if the vectors hati\ -\ hatj\ +\ hatk,\ 3 hati+\ hatj\ +\ 2 hatk\ and\ hati+lambda hatj+ hat3k\ are coplanar

If vectors veca =hati +2hatj -hatk, vecb = 2hati -hatj +hatk and vecc = lamdahati +hatj +2hatk are coplanar, then find the value of lamda .

If vec a =hati +3hatj , vecb = 2hati -hatj - hatk and vec c =mhati +7 hatj +3hatk are coplanar then find the value of m.