Home
Class 12
MATHS
If a,b and c are non-coplanar vectors, p...

If a,b and c are non-coplanar vectors, prove that 3a-7b-4c, 3a-2b+c and a+b+2c are coplanar.

Text Solution

AI Generated Solution

To prove that the vectors \( \mathbf{3a - 7b - 4c} \), \( \mathbf{3a - 2b + c} \), and \( \mathbf{a + b + 2c} \) are coplanar, we can use the scalar triple product. The vectors are coplanar if the scalar triple product of these vectors is equal to zero. ### Step-by-step Solution: 1. **Define the Vectors**: Let: \[ \mathbf{\alpha} = 3\mathbf{a} - 7\mathbf{b} - 4\mathbf{c} ...
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|7 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|17 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

If a,b,c are three non-coplanar vectors, then 3a-7b-4c,3a-2b+c and a+b+lamdac will be coplanar, if lamda is

i. If vec a , vec b a n d vec c are non-coplanar vectors, prove that vectors 3veca -7vecb -4 vecc ,3 veca -2vecb + vecc and veca + vecb +2 vecc are coplanar.

If a ,\ b ,\ c are non zero non coplanar vectors, prove that the following vectors are coplanar. 5 vec a+6 vec b+7 vec c ,\ 7 vec a-8 vec b+9 vec c\ a n d\ 3 vec a+20 vec b+5 vec c

If vec a ,\ vec b ,\ vec c are non coplanar vectors, prove that the following vectors are non coplanar: \ 2 vec a- vec b+3 vec c ,\ vec a+ vec b-2 vec c\ a n d\ vec a+ vec b-3 vec c

If vec a ,\ vec b ,\ vec c are non coplanar vectors, prove that the following vectors are non coplanar: \ vec a+2 vec b+3 vec c ,\ 2 vec a+ vec b+3 vec c\ a n d\ vec a+ vec b+ vec c

Show that the vectors 2 vec a- vec b+3 vec c , vec a+ vec b-2 vec ca n d vec a+ vec b-3 vec c are non-coplanar vectors (where vec a , vec b , vec c are non-coplanar vectors)

Show that the vectors 2 vec a- vec b+3 vec c , vec a+ vec b-2 vec ca n d vec a+ vec b-3 vec c are non-coplanar vectors (where vec a , vec b , vec c are non-coplanar vectors)

If vec a , vec b , vec c are three non-coplanar vectors, prove that [ vec a+ vec b+ vec c vec a+ vec b vec a+ vec c]=-[ vec a vec b vec c]

If vec a , vec ba n d vec c are non-coplanar vectors, prove that the four points 2 vec a+3 vec b- vec c , vec a-2 vec b+3 vec c ,3 vec a+ 4 vec b-2 vec ca n d vec a-6 vec b+6 vec c are coplanar.

Show that the vectors vec a , vec b and vec c are coplanar if vec a+ vec b , vec b+ vec c and vec c+ vec a are coplanar.