Home
Class 12
MATHS
The non-zero vectors are vec a,vec b an...

The non-zero vectors are `vec a,vec b and vec c` are related by `vec a= 8vec b and vec c = -7vec b`. Then the angle between `vec a and vec c` is

A

`(pi)/(4)`

B

`(pi)/(2)`

C

`pi`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To find the angle between the vectors \( \vec{a} \) and \( \vec{c} \) given the relationships \( \vec{a} = 8\vec{b} \) and \( \vec{c} = -7\vec{b} \), we can follow these steps: ### Step 1: Write the expressions for \( \vec{a} \) and \( \vec{c} \) Given: \[ \vec{a} = 8\vec{b} \] \[ \vec{c} = -7\vec{b} \] ### Step 2: Use the dot product to find the angle between \( \vec{a} \) and \( \vec{c} \) The dot product formula states: \[ \vec{a} \cdot \vec{c} = |\vec{a}| |\vec{c}| \cos \theta \] where \( \theta \) is the angle between \( \vec{a} \) and \( \vec{c} \). ### Step 3: Calculate \( \vec{a} \cdot \vec{c} \) Substituting the expressions for \( \vec{a} \) and \( \vec{c} \): \[ \vec{a} \cdot \vec{c} = (8\vec{b}) \cdot (-7\vec{b}) = -56 (\vec{b} \cdot \vec{b}) = -56 |\vec{b}|^2 \] ### Step 4: Calculate the magnitudes of \( \vec{a} \) and \( \vec{c} \) The magnitudes are: \[ |\vec{a}| = |8\vec{b}| = 8|\vec{b}| \] \[ |\vec{c}| = |-7\vec{b}| = 7|\vec{b}| \] ### Step 5: Substitute the magnitudes into the dot product formula Now substituting back into the dot product equation: \[ -56 |\vec{b}|^2 = (8|\vec{b}|)(7|\vec{b}|) \cos \theta \] This simplifies to: \[ -56 |\vec{b}|^2 = 56 |\vec{b}|^2 \cos \theta \] ### Step 6: Divide both sides by \( |\vec{b}|^2 \) (assuming \( |\vec{b}| \neq 0 \)) \[ -56 = 56 \cos \theta \] ### Step 7: Solve for \( \cos \theta \) Dividing both sides by 56 gives: \[ \cos \theta = -1 \] ### Step 8: Find the angle \( \theta \) The angle \( \theta \) for which \( \cos \theta = -1 \) is: \[ \theta = \pi \text{ radians} \] ### Final Answer The angle between \( \vec{a} \) and \( \vec{c} \) is \( \pi \) radians. ---

To find the angle between the vectors \( \vec{a} \) and \( \vec{c} \) given the relationships \( \vec{a} = 8\vec{b} \) and \( \vec{c} = -7\vec{b} \), we can follow these steps: ### Step 1: Write the expressions for \( \vec{a} \) and \( \vec{c} \) Given: \[ \vec{a} = 8\vec{b} \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|7 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|17 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

If | vec a|+| vec b|=| vec c| and vec a+ vec b= vec c , then find the angle between vec a and vec bdot

If vec a,vec b,vec c are three vectors such that vec a=vec b+vec c and the angle between vec b and vec c is pi/2, then

Vector vec a , vec b and vec c are such that vec a+ vec b+ vec c= vec0 and |a|=3,| vec b|=5 and | vec c|=7. Find the angle between vec a and vec b .

If vec(A) + vec(B) = vec(C ) and A + B = C , then the angle between vec(A) and vec(B) is :

Let vec r be a non-zero vector satisfying vec r dot vec a= vec rdot vec b= vec rdot vec c=0 for given non-zero vectors vec a , vec b and vec c dot Statement 1: [ vec a- vec b vec b- vec c vec c- vec a]=0 Statement 2: [ vec a vec b vec c]=0

The magnitude of vector vec(A),vec(B) and vec(C ) are respectively 12,5 and 13 unit and vec(A)+vec(B)= vec(C ) then the angle between vec(A) and vec(B) is

veca , vec b , vec c are non-coplanar vectors and x vec a + y vec b + z vec c = vec 0 then

Show that the vectors vec a , vec b and vec c are coplanar if vec a+ vec b , vec b+ vec c and vec c+ vec a are coplanar.

If vec a , vec b and vec c are non-coplanar unit vectors such that vec axx( vec bxx vec c)=( vec b+ vec c)/(sqrt(2)) , then the angle between vec a and vec b is a. 3pi//4 b. pi//4 c. pi//2 d. pi

If vec a , vec b ,and vec c are non-coplanar unit vectors such that vec axx( vec bxx vec c)=( vec b+ vec c)/(sqrt(2)), vec b and vec c are non-parallel, then prove that the angel between vec a and vec b, is 3pi//4.