Home
Class 12
MATHS
If the vectors 6hati-2hatj+3hatkk,2hati+...

If the vectors `6hati-2hatj+3hatkk,2hati+3hatj-6hatk and 3hati+6hatj-2hatk` form a triangle, then it is

A

right angled

B

obtuse angled

C

equilateral

D

isosceles

Text Solution

AI Generated Solution

The correct Answer is:
To determine the type of triangle formed by the given vectors \( \vec{A} = 6\hat{i} - 2\hat{j} + 3\hat{k} \), \( \vec{B} = 2\hat{i} + 3\hat{j} - 6\hat{k} \), and \( \vec{C} = 3\hat{i} + 6\hat{j} - 2\hat{k} \), we will follow these steps: ### Step 1: Define the position vectors Let: - Position vector of point A: \( \vec{A} = 6\hat{i} - 2\hat{j} + 3\hat{k} \) - Position vector of point B: \( \vec{B} = 2\hat{i} + 3\hat{j} - 6\hat{k} \) - Position vector of point C: \( \vec{C} = 3\hat{i} + 6\hat{j} - 2\hat{k} \) ### Step 2: Calculate the vector \( \vec{AB} \) The vector \( \vec{AB} \) is given by: \[ \vec{AB} = \vec{B} - \vec{A} = (2\hat{i} + 3\hat{j} - 6\hat{k}) - (6\hat{i} - 2\hat{j} + 3\hat{k}) \] Calculating this gives: \[ \vec{AB} = (2 - 6)\hat{i} + (3 + 2)\hat{j} + (-6 - 3)\hat{k} = -4\hat{i} + 5\hat{j} - 9\hat{k} \] ### Step 3: Calculate the magnitude of \( \vec{AB} \) The magnitude of \( \vec{AB} \) is: \[ |\vec{AB}| = \sqrt{(-4)^2 + 5^2 + (-9)^2} = \sqrt{16 + 25 + 81} = \sqrt{122} \] ### Step 4: Calculate the vector \( \vec{BC} \) The vector \( \vec{BC} \) is given by: \[ \vec{BC} = \vec{C} - \vec{B} = (3\hat{i} + 6\hat{j} - 2\hat{k}) - (2\hat{i} + 3\hat{j} - 6\hat{k}) \] Calculating this gives: \[ \vec{BC} = (3 - 2)\hat{i} + (6 - 3)\hat{j} + (-2 + 6)\hat{k} = 1\hat{i} + 3\hat{j} + 4\hat{k} \] ### Step 5: Calculate the magnitude of \( \vec{BC} \) The magnitude of \( \vec{BC} \) is: \[ |\vec{BC}| = \sqrt{1^2 + 3^2 + 4^2} = \sqrt{1 + 9 + 16} = \sqrt{26} \] ### Step 6: Calculate the vector \( \vec{AC} \) The vector \( \vec{AC} \) is given by: \[ \vec{AC} = \vec{C} - \vec{A} = (3\hat{i} + 6\hat{j} - 2\hat{k}) - (6\hat{i} - 2\hat{j} + 3\hat{k}) \] Calculating this gives: \[ \vec{AC} = (3 - 6)\hat{i} + (6 + 2)\hat{j} + (-2 - 3)\hat{k} = -3\hat{i} + 8\hat{j} - 5\hat{k} \] ### Step 7: Calculate the magnitude of \( \vec{AC} \) The magnitude of \( \vec{AC} \) is: \[ |\vec{AC}| = \sqrt{(-3)^2 + 8^2 + (-5)^2} = \sqrt{9 + 64 + 25} = \sqrt{98} \] ### Step 8: Compare the squares of the magnitudes Now we will compare \( |\vec{AB}|^2 \), \( |\vec{BC}|^2 \), and \( |\vec{AC}|^2 \): - \( |\vec{AB}|^2 = 122 \) - \( |\vec{BC}|^2 = 26 \) - \( |\vec{AC}|^2 = 98 \) We check if \( |\vec{AC}|^2 < |\vec{AB}|^2 + |\vec{BC}|^2 \): \[ 98 < 122 + 26 \Rightarrow 98 < 148 \] This condition holds true. ### Conclusion Since \( |\vec{AC}|^2 < |\vec{AB}|^2 + |\vec{BC}|^2 \), triangle \( ABC \) is an **obtuse triangle**. ---

To determine the type of triangle formed by the given vectors \( \vec{A} = 6\hat{i} - 2\hat{j} + 3\hat{k} \), \( \vec{B} = 2\hat{i} + 3\hat{j} - 6\hat{k} \), and \( \vec{C} = 3\hat{i} + 6\hat{j} - 2\hat{k} \), we will follow these steps: ### Step 1: Define the position vectors Let: - Position vector of point A: \( \vec{A} = 6\hat{i} - 2\hat{j} + 3\hat{k} \) - Position vector of point B: \( \vec{B} = 2\hat{i} + 3\hat{j} - 6\hat{k} \) - Position vector of point C: \( \vec{C} = 3\hat{i} + 6\hat{j} - 2\hat{k} \) ...
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|7 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|17 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

Using dot product of vectors show that the vectors 2hati-hatj+hatk, hati-3hatj-5hatk and 3hati-4hatj-4hatk form a righat angled triangle

Show that vectors 3hati-2hatj+2hatk,hati-3hatj+4hatk and 2hati-hatj-2hatk form a right angled triangle

Show that the vectors a =3hati - 2hatj+hatk, b=hati - 3hatj+5hatk and c=2hati+hatj-4hatk form a right angled triangle.

Show that the vectors a =3hati - 2hatj+hatk, b=hati - 3hatj+5hatk and c=2hatj+hatj-4hatk form a right angled triangle.

Prove that points hati+2hatj-3hatk, 2hati-hatj+hatk and 2hati+5hatj-hatk form a triangle in space.

Check whether the three vectors 2hati+2hatj+3hatk, vecb=-3hati+3hatj+2hatk and vecc=3hati+4hatk form a triangle or not.

Show that the vectors hati-hatj-hatk,2hati+3hatj+hatk and 7hati+3hatj-4hatk are coplanar.

If the vectors 4hati+11hatj+mhatk,7hati+2hatj+6hatk and hati+5hatj+4hatk are coplanar, then m is equal to

Show that the vectors hati-3hatj+2hatk,2hati-4hatj-hatk and 3hati+2hatj-hatk and linearly independent.

Prove that the vecotos 3hati+5hatj+2hatk, 2hati-3hatj-5hatk and 5hati+2hatj-3hatk form the sides of an equlateral triangle.