Home
Class 12
MATHS
ABCD is a parallelogram whose diagonals ...

`ABCD` is a parallelogram whose diagonals meet at P. If O is a fixed point, then `vec(OA)+vec(OB)+vec(OC)+vec(OD)` equals :

A

(a) `vec(OP)`

B

(b) `2vec(OP)`

C

(c) `3vec(OP)`

D

(d) `4vec(OP)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression for \( \vec{OA} + \vec{OB} + \vec{OC} + \vec{OD} \) in terms of the vector \( \vec{OP} \), where \( P \) is the midpoint of the diagonals of the parallelogram \( ABCD \). ### Step-by-Step Solution: 1. **Understanding the Setup**: - Let \( O \) be a fixed point. - Let \( A, B, C, D \) be the vertices of the parallelogram \( ABCD \). - The diagonals \( AC \) and \( BD \) intersect at point \( P \). 2. **Using Vector Addition**: - We can express the vectors from point \( O \) to each vertex of the parallelogram: \[ \vec{OA} + \vec{OB} + \vec{OC} + \vec{OD} \] 3. **Applying the Properties of Parallelograms**: - Since \( P \) is the midpoint of both diagonals \( AC \) and \( BD \), we have: \[ \vec{OP} = \frac{1}{2}(\vec{OA} + \vec{OC}) = \frac{1}{2}(\vec{OB} + \vec{OD}) \] 4. **Expressing \( \vec{OA} + \vec{OC} \) and \( \vec{OB} + \vec{OD} \)**: - Rearranging gives us: \[ \vec{OA} + \vec{OC} = 2\vec{OP} \] \[ \vec{OB} + \vec{OD} = 2\vec{OP} \] 5. **Combining the Results**: - Now, we can add these two results: \[ \vec{OA} + \vec{OB} + \vec{OC} + \vec{OD} = (\vec{OA} + \vec{OC}) + (\vec{OB} + \vec{OD}) = 2\vec{OP} + 2\vec{OP} = 4\vec{OP} \] 6. **Final Result**: - Therefore, we conclude that: \[ \vec{OA} + \vec{OB} + \vec{OC} + \vec{OD} = 4\vec{OP} \] ### Conclusion: The final answer is: \[ \vec{OA} + \vec{OB} + \vec{OC} + \vec{OD} = 4\vec{OP} \]

To solve the problem, we need to find the expression for \( \vec{OA} + \vec{OB} + \vec{OC} + \vec{OD} \) in terms of the vector \( \vec{OP} \), where \( P \) is the midpoint of the diagonals of the parallelogram \( ABCD \). ### Step-by-Step Solution: 1. **Understanding the Setup**: - Let \( O \) be a fixed point. - Let \( A, B, C, D \) be the vertices of the parallelogram \( ABCD \). - The diagonals \( AC \) and \( BD \) intersect at point \( P \). ...
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|7 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|17 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

If ABCD is a rhombus whose diagonals intersect at E, then vec(EA) + vec(EB) + vec(EC) + vec( ED) equals

If ABCD is a quadrilateral, then vec(BA) + vec(BC)+vec(CD) + vec(DA)=

Let A B C D be a parallelogram whose diagonals intersect at P and let O be the origin. Then prove that vec O A+ vec O B+ vec O C+ vec O D=4 vec O Pdot

Let A B C D be a p[arallelogram whose diagonals intersect at P and let O be the origin. Then prove that vec O A+ vec O B+ vec O C+ vec O D=4 vec O Pdot

Let A B C D be a p[arallelogram whose diagonals intersect at P and let O be the origin. Then prove that vec O A+ vec O B+ vec O C+ vec O D=4 vec O Pdot

If ABCD is a parallelogram, then vec(AC) - vec(BD) =

If A B C D is a rhombus whose diagonals cut at the origin O , then proved that vec O A+ vec O B+ vec O C+ vec O D =0

If A B C D is a rhombus whose diagonals cut at the origin O , then proved that vec O A+ vec O B+ vec O C+ vec O D+ vec Odot

If OAB is a tetrahedron with edges and hatp, hatq, hatr are unit vectors along bisectors of vec(OA), vec(OB):vec(OB), vec(OC):vec(OC), vec(OA) respectively and hata=(vec(OA))/(|vec(OA)|), vecb=(vec(OB))/(|vec(OB)|), vec c= (vec(OC))/(|vec(OC)|) , then :

If O is the circumcentre and P the orthocentre of Delta ABC , prove that vec(OA)+ vec(OB) + vec(OC) =vec(OP) .