Home
Class 12
MATHS
If veca+vecb+vecc=vec0, |veca| = 3, |vec...

If `veca+vecb+vecc=vec0, |veca| = 3, |vecb| = 5, |vecc| = 7`, then angle between `veca` and `vecb` is : a. `(pi)/(2)` b. `(pi)/(3)` c. `(pi)/4` d. `(pi)/(6)`

A

`(pi)/(2)`

B

`(pi)/(3)`

C

`(pi)/4`

D

`(pi)/(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation given in the question: 1. **Given Equation**: \[ \vec{a} + \vec{b} + \vec{c} = \vec{0} \] Rearranging gives: \[ \vec{a} + \vec{b} = -\vec{c} \] 2. **Taking Magnitudes**: Taking the magnitudes on both sides: \[ |\vec{a} + \vec{b}| = |\vec{c}| \] Squaring both sides: \[ |\vec{a} + \vec{b}|^2 = |\vec{c}|^2 \] 3. **Expanding the Left Side**: Using the formula for the magnitude of a sum of vectors: \[ |\vec{a} + \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + 2 \vec{a} \cdot \vec{b} \] Thus, we have: \[ |\vec{a}|^2 + |\vec{b}|^2 + 2 \vec{a} \cdot \vec{b} = |\vec{c}|^2 \] 4. **Substituting Known Values**: We know: \[ |\vec{a}| = 3, \quad |\vec{b}| = 5, \quad |\vec{c}| = 7 \] Substituting these values in: \[ 3^2 + 5^2 + 2 \vec{a} \cdot \vec{b} = 7^2 \] This simplifies to: \[ 9 + 25 + 2 \vec{a} \cdot \vec{b} = 49 \] 5. **Simplifying the Equation**: Combining the constants: \[ 34 + 2 \vec{a} \cdot \vec{b} = 49 \] Rearranging gives: \[ 2 \vec{a} \cdot \vec{b} = 49 - 34 = 15 \] 6. **Using the Dot Product**: The dot product can be expressed as: \[ \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta \] Therefore: \[ 2 |\vec{a}| |\vec{b}| \cos \theta = 15 \] Substituting the magnitudes: \[ 2 \cdot 3 \cdot 5 \cos \theta = 15 \] 7. **Solving for Cosine**: This simplifies to: \[ 30 \cos \theta = 15 \] Dividing both sides by 30: \[ \cos \theta = \frac{15}{30} = \frac{1}{2} \] 8. **Finding the Angle**: The angle whose cosine is \( \frac{1}{2} \) is: \[ \theta = \frac{\pi}{3} \] Thus, the angle between \( \vec{a} \) and \( \vec{b} \) is \( \frac{\pi}{3} \). ### Final Answer: The angle between \( \vec{a} \) and \( \vec{b} \) is \( \frac{\pi}{3} \).

To solve the problem, we start with the equation given in the question: 1. **Given Equation**: \[ \vec{a} + \vec{b} + \vec{c} = \vec{0} \] Rearranging gives: \[ ...
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|7 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|17 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

If veca +vecb +vecc =vec0, |veca| =3 , |vecb|=5 and |vecc| =7 , then the angle between veca and vecb is

veca+vecb+vecc=vec0, |veca|=3, |vecb|=5,|vecc|=9 ,find the angle between veca and vecc .

If veca +vecb +vecc=0, |veca|=3,|vecb|=5, |vecc|=7 , then find the angle between veca and vecb .

If veca +vecb +vecc=0, |veca|=3,|vecb|=5, |vecc|=7 , then find the angle between veca and vecb .

If veca +vecb +vecc=0, |veca|=3,|vecb|=5, |vecc|=7 , then find the angle between veca and vecb .

If veca+vecb+vecc=0,|veca|=3,|vecb|=5,|vecc|=7 find the angle between veca and vecb

If vecA+ vecB = vecC and A+B+C=0 , then the angle between vecA and vecB is :

If vecA+ vecB = vecC and A+B+C=0 , then the angle between vecA and vecB is :

If |veca.vecb|=sqrt(3)|vecaxxvecb| then the angle between veca and vecb is (A) pi/6 (B) pi/4 (C) pi/3 (D) pi/2

If veca and vecb are two vectors, such that veca.vecblt0 and |veca.vecb|=|vecaxxvecb| then the angle between the vectors veca and vecb is (a) pi (b) (7pi)/4 (c) pi/4 (d) (3pi)/4