Home
Class 12
MATHS
Let A and B be points with position vect...

Let `A` and `B` be points with position vectors `veca` and `vecb` with respect to origin `O`. If the point `C` on `OA` is such that `2vec(AC)=vec(CO), vec(CD) ` is parallel to `vec(OB)` and `|vec(CD)|=3|vec(OB)|` then `vec(AD)` is (A) `vecb-veca/9` (B) `3vecb-veca/3` (C) `vecb-veca/3` (D) `vecb+veca/3`

A

`3b-(a)/(2)`

B

`3b+(a)/(2)`

C

`3b-(a)/(3)`

D

`3b+(a)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the given conditions and derive the required vector. ### Step 1: Understand the given vectors Let the position vectors of points A and B be represented as: - \( \vec{A} = \vec{a} \) - \( \vec{B} = \vec{b} \) The point C lies on the line segment OA. ### Step 2: Express the position vector of point C We know that \( 2 \vec{AC} = \vec{CO} \). If we denote the position vector of point C as \( \vec{C} \), we can express this relationship as: \[ \vec{AC} = \vec{C} - \vec{A} \] \[ \vec{CO} = \vec{O} - \vec{C} = -\vec{C} \] Thus, substituting these into the equation gives: \[ 2(\vec{C} - \vec{A}) = -\vec{C} \] This simplifies to: \[ 2\vec{C} - 2\vec{A} = -\vec{C} \] \[ 3\vec{C} = 2\vec{A} \] \[ \vec{C} = \frac{2}{3} \vec{A} \] ### Step 3: Determine the position vector of point D Since \( \vec{CD} \) is parallel to \( \vec{OB} \) and \( |\vec{CD}| = 3 |\vec{OB}| \), we can express \( \vec{CD} \) as: \[ \vec{CD} = k \vec{b} \] where \( k \) is a scalar. The magnitude condition gives: \[ |\vec{CD}| = |k \vec{b}| = |k| |\vec{b}| = 3 |\vec{b}| \] Thus, we can set \( |k| = 3 \), implying \( k = 3 \) (assuming the direction is the same). ### Step 4: Write the vector CD in terms of C and D From the above, we have: \[ \vec{CD} = \vec{D} - \vec{C} = 3\vec{b} \] This leads to: \[ \vec{D} = \vec{C} + 3\vec{b} \] ### Step 5: Substitute for C Substituting \( \vec{C} = \frac{2}{3} \vec{A} \) into the equation for \( \vec{D} \): \[ \vec{D} = \frac{2}{3} \vec{A} + 3\vec{b} \] ### Step 6: Find the vector AD Now, we need to find \( \vec{AD} \): \[ \vec{AD} = \vec{D} - \vec{A} \] Substituting \( \vec{D} \): \[ \vec{AD} = \left(\frac{2}{3} \vec{A} + 3\vec{b}\right) - \vec{A} \] This simplifies to: \[ \vec{AD} = \frac{2}{3} \vec{A} + 3\vec{b} - \frac{3}{3} \vec{A} \] \[ \vec{AD} = \left(3\vec{b} - \frac{1}{3} \vec{A}\right) \] \[ \vec{AD} = \frac{9\vec{b} - \vec{A}}{3} \] ### Final Result Thus, we have: \[ \vec{AD} = \frac{3\vec{b} - \vec{a}}{3} \] ### Conclusion The answer corresponds to option (B): \[ \vec{AD} = \frac{3\vec{b} - \vec{a}}{3} \]

To solve the problem step by step, we will analyze the given conditions and derive the required vector. ### Step 1: Understand the given vectors Let the position vectors of points A and B be represented as: - \( \vec{A} = \vec{a} \) - \( \vec{B} = \vec{b} \) The point C lies on the line segment OA. ...
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|7 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|17 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

If veca and vecb are position vectors of A and B respectively, then the position vector of a point C in vec(AB) produced such that vec(AC) =2015 vec(AB) is

If veca is perpendiculasr to both vecb and vecc then (A) veca.(vecbxxvecc)=vec0 (B) vecaxx(vecbxvecc)=vec0 (C) vecaxx(vecb+vecc)=vec0 (D) veca+(vecb+vecc)=vec0

Prove that veca*(vecb+vec c)xx (veca+3vecb+2vec c)=-(veca vecb vecc )

For any two vectors veca and vecb prove that |veca-vec|ge|veca|-|vecb|

Prove that : veca*(vecb+vec c)xx(veca+2vecb+3vec c)=[veca vecb vec c]

The position vector of foru points A,B,C,D are veca, vecb, 2veca+3vecb and veca-2vecb respectively. Expess the vectors vec(AC), vec(DB), vec(BC) and vec(CA) in terms of veca and vecb .

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

If veca.vecb=0 and vecaxxvecb=0 prove that veca=vec0 or vecb=vec0 .

If veca , vecb and vec(c ) are there vectors such that veca + vecb = vec(C ) and further a^2 +b^2 =c ^2 find the angle between veca and vecb ?

Orthocenter of an equilateral triangle ABC is the origin O. If vec(OA)=veca, vec(OB)=vecb, vec(OC)=vecc , then vec(AB)+2vec(BC)+3vec(CA)=