Home
Class 12
MATHS
Orthocenter of an equilateral triangle A...

Orthocenter of an equilateral triangle ABC is the origin O. If `vec(OA)=veca, vec(OB)=vecb, vec(OC)=vecc`, then `vec(AB)+2vec(BC)+3vec(CA)=`

A

3c

B

3a

C

0

D

3b

Text Solution

Verified by Experts

The correct Answer is:
B

For an equilateral triangle, centroid is the samme as orthocentre
`therefore(OA+OB+OC)/(3)=0`
`thereforeOA+OB+OC=0`
Now, `AB+2BC+3CA`
`=OB-OA+2OC-2OB+3OA-3OC`
`=-OB+2OA-OC`
`=(OB+OA+OC)+3OA=3OA=3a`
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|7 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|17 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

If |vec (AO) +vec (OB)| =|vec(BO) + vec(OC)| , then A, B, C form

Assertion ABCDEF is a regular hexagon and vec(AB)=veca,vec(BC)=vecb and vec(CD)=vecc, then vec(EA) is equal to -(vecb+vecc) , Reason: vec(AE)=vec(BD)=vec(BC)+vec(CD) (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

Let O, O' and G be the circumcentre, orthocentre and centroid of a Delta ABC and S be any point in the plane of the triangle. Statement -1: vec(O'A) + vec(O'B) + vec(O'C)=2vec(O'O) Statement -2: vec(SA) + vec(SB) + vec(SC) = 3 vec(SG)

Let O be the centre of the regular hexagon ABCDEF then find vec(OA)+vec(OB)+vec(OD)+vec(OC)+vec(OE)+vec(OF)

If ABCDEF is a regular hexagon with vec(AB) = veca and vec(BC)= vecb, then vec(CE) equals

In a triangle OAC, if B is the mid point of side AC and vec O A= vec a ,\ vec O B= vec b ,\ then what is vec O C ?

Prove that 3vec(OD)+vec(DA)+vec(DB)+vec(DC) is equal to vec(OA)+vec(OB)+vec(OC) .

In triangle ABC (Figure), which of the following is not true: (A) vec(AB)+ vec(BC)+ vec(CA)=vec0 (B) vec(AB)+ vec(BC)- vec(AC) =vec0 (C) vec(AB)+ vec(BC)- vec(CA)=vec0 (D) vec(AB)+ vec(CB)+ vec(CA)=vec0

Let O be the centre of a regular pentagon ABCDE and vec(OA) = veca , then vec(AB) +vec(2BC) + vec(3CD) + vec(4DE) + vec(5EA) is equals:

Let O be the centre of a regular pentagon ABCDE and vec(OA) = veca , then vec(AB) +vec(2BC) + vec(3CD) + vec(4DE) + vec(5EA) is equals: