Home
Class 12
MATHS
If a(1) and a(2) are two values of a for...

If `a_(1)` and `a_(2)` are two values of a for which the unit vector `aveci + bvecj +1/2veck` is linearly dependent with `veci+2vecj` and `vecj-2veck`, then `1/a_(1)+1/a_(2)` is equal to

A

(a)1

B

(b)`(1)/(8)`

C

(c)`(-16)/(11)`

D

(d)`(-11)/(16)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the values of \( a_1 \) and \( a_2 \) such that the unit vector \( \vec{a} = a\hat{i} + b\hat{j} + \frac{1}{2}\hat{k} \) is linearly dependent on the vectors \( \hat{i} + 2\hat{j} \) and \( \hat{j} - 2\hat{k} \). ### Step-by-step Solution: 1. **Set up the linear dependence condition**: The vector \( \vec{a} \) is linearly dependent on the vectors \( \vec{v_1} = \hat{i} + 2\hat{j} \) and \( \vec{v_2} = \hat{j} - 2\hat{k} \). This means there exist scalars \( m \) and \( l \) such that: \[ a\hat{i} + b\hat{j} + \frac{1}{2}\hat{k} = m(\hat{i} + 2\hat{j}) + l(\hat{j} - 2\hat{k}) \] 2. **Expand the right-hand side**: \[ m(\hat{i} + 2\hat{j}) + l(\hat{j} - 2\hat{k}) = m\hat{i} + (2m + l)\hat{j} - 2l\hat{k} \] 3. **Equate coefficients**: From the equation \( a\hat{i} + b\hat{j} + \frac{1}{2}\hat{k} = m\hat{i} + (2m + l)\hat{j} - 2l\hat{k} \), we can equate coefficients: - For \( \hat{i} \): \( a = m \) - For \( \hat{j} \): \( b = 2m + l \) - For \( \hat{k} \): \( \frac{1}{2} = -2l \) 4. **Solve for \( l \)**: From \( \frac{1}{2} = -2l \), we find: \[ l = -\frac{1}{4} \] 5. **Substitute \( l \) into the equation for \( b \)**: Substitute \( l \) into \( b = 2m + l \): \[ b = 2m - \frac{1}{4} \] 6. **Substitute \( m \) into the equation for \( a \)**: Since \( a = m \), we can express \( b \) in terms of \( a \): \[ b = 2a - \frac{1}{4} \] 7. **Use the unit vector condition**: The vector \( \vec{a} \) is a unit vector, so: \[ a^2 + b^2 + \left(\frac{1}{2}\right)^2 = 1 \] Substitute \( b \): \[ a^2 + \left(2a - \frac{1}{4}\right)^2 + \frac{1}{4} = 1 \] 8. **Expand and simplify**: \[ a^2 + (4a^2 - a + \frac{1}{16}) + \frac{1}{4} = 1 \] Combine terms: \[ 5a^2 - a + \frac{1}{16} + \frac{4}{16} = 1 \] \[ 5a^2 - a + \frac{5}{16} = 1 \] Multiply through by 16 to eliminate the fraction: \[ 80a^2 - 16a + 5 = 16 \] \[ 80a^2 - 16a - 11 = 0 \] 9. **Find the roots using the quadratic formula**: The roots \( a_1 \) and \( a_2 \) are given by: \[ a = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{16 \pm \sqrt{(-16)^2 - 4 \cdot 80 \cdot (-11)}}{2 \cdot 80} \] Calculate the discriminant: \[ 256 + 3520 = 3776 \] Thus, \[ a = \frac{16 \pm \sqrt{3776}}{160} \] 10. **Calculate \( \frac{1}{a_1} + \frac{1}{a_2} \)**: Using the property of roots: \[ \frac{1}{a_1} + \frac{1}{a_2} = \frac{a_1 + a_2}{a_1 a_2} \] From Vieta's formulas: \[ a_1 + a_2 = \frac{16}{80} = \frac{1}{5}, \quad a_1 a_2 = \frac{-11}{80} \] Therefore, \[ \frac{1}{a_1} + \frac{1}{a_2} = \frac{\frac{1}{5}}{\frac{-11}{80}} = \frac{80}{5 \cdot -11} = -\frac{16}{11} \] ### Final Answer: \[ \frac{1}{a_1} + \frac{1}{a_2} = -\frac{16}{11} \]

To solve the problem, we need to determine the values of \( a_1 \) and \( a_2 \) such that the unit vector \( \vec{a} = a\hat{i} + b\hat{j} + \frac{1}{2}\hat{k} \) is linearly dependent on the vectors \( \hat{i} + 2\hat{j} \) and \( \hat{j} - 2\hat{k} \). ### Step-by-step Solution: 1. **Set up the linear dependence condition**: The vector \( \vec{a} \) is linearly dependent on the vectors \( \vec{v_1} = \hat{i} + 2\hat{j} \) and \( \vec{v_2} = \hat{j} - 2\hat{k} \). This means there exist scalars \( m \) and \( l \) such that: \[ a\hat{i} + b\hat{j} + \frac{1}{2}\hat{k} = m(\hat{i} + 2\hat{j}) + l(\hat{j} - 2\hat{k}) ...
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|7 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|17 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

A unit vector coplanar with veci + vecj + 2veck and veci + 2 vecj + veck and perpendicular to veci + vecj + veck is _______

The ratio in which the plane vecr.(veci-2 vecj+3veck)=17 divides the line joining the points -2veci+4vecj+7veckandvec3i-5vecj+8veck is

Write the unit vector in the direction of vecA=5veci+vecj-2veck .

If vec(a_(1)) and vec(a_(2)) are two non-collinear unit vectors and if |vec(a_(1)) + vec(a_(2))|=sqrt(3) , then the value of (vec(a_(1))-vec(a_(2))). (2 vec(a_(1))+vec(a_(2))) is :

If a vector vecr of magnitude 3sqrt6 is directed along the bisector of the angle between the vectors veca =7veci-4vecj -4veck and vecb = -2veci- vecj+ 2veck , then vecr is equal to

Find the equation of the plane through the point 2veci+3vecj-veck and perpendicular to the vector 3veci-4vecj+7veck .

Find the vector equation of the line through the points 2veci+vecj-3veck and parallel to vector veci+2vecj+veck

If veca=2veci+3vecj+4veck and vecb =4veci+3vecj+2veck , find the angle between veca and vecb .

Examine whether the vectors veca=2veci+3vecj+2veck, vecb=veci-vecj+2veck and vecc=3veci+2vecj-4veck form a left handed or a righat handed system.

If A_(1),A_(2) are between two numbers, then (A_(1)+A_(2))/(H_(1)+H_(2)) is equal to