Home
Class 12
MATHS
vec a , vec b , vec c are three coplanar...

` vec a , vec b , vec c` are three coplanar unit vectors such that ` vec a+ vec b+ vec c=0.` If three vectors ` vec p , vec q ,a n d vec r` are parallel to ` vec a , vec b ,a n d vec c ,` respectively, and have integral but different magnitudes, then among the following options, `| vec p+ vec q+ vec r|` can take a value equal to a. `1` b. `0` c. `sqrt(3)` d. `2`

A

1

B

0

C

`sqrt(3)`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given conditions and derive the value of \(|\vec{p} + \vec{q} + \vec{r}|\) based on the vectors defined in the problem. ### Step-by-Step Solution: 1. **Understanding the Given Vectors**: We are given three coplanar unit vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) such that: \[ \vec{a} + \vec{b} + \vec{c} = 0 \] This implies that \(\vec{c} = -(\vec{a} + \vec{b})\). 2. **Choosing a Coordinate System**: We can represent the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) in a coordinate system. Let's choose: \[ \vec{a} = \hat{i}, \quad \vec{b} = -\frac{1}{2}\hat{j}, \quad \vec{c} = -\frac{1}{2}\hat{i} - \frac{\sqrt{3}}{2}\hat{j} \] This satisfies the condition that they are unit vectors and coplanar. 3. **Defining the Vectors \(\vec{p}\), \(\vec{q}\), and \(\vec{r}\)**: We define: \[ \vec{p} = \lambda \vec{a}, \quad \vec{q} = \mu \vec{b}, \quad \vec{r} = \nu \vec{c} \] where \(\lambda\), \(\mu\), and \(\nu\) are integral but different magnitudes. 4. **Calculating \(\vec{p} + \vec{q} + \vec{r}\)**: Substitute the expressions for \(\vec{p}\), \(\vec{q}\), and \(\vec{r}\): \[ \vec{p} + \vec{q} + \vec{r} = \lambda \hat{i} + \mu \left(-\frac{1}{2}\hat{j}\right) + \nu \left(-\frac{1}{2}\hat{i} - \frac{\sqrt{3}}{2}\hat{j}\right) \] Simplifying this gives: \[ \vec{p} + \vec{q} + \vec{r} = \left(\lambda - \frac{\nu}{2}\right) \hat{i} + \left(-\frac{\mu}{2} - \frac{\nu \sqrt{3}}{2}\right) \hat{j} \] 5. **Finding the Magnitude**: The magnitude of \(\vec{p} + \vec{q} + \vec{r}\) is: \[ |\vec{p} + \vec{q} + \vec{r}| = \sqrt{\left(\lambda - \frac{\nu}{2}\right)^2 + \left(-\frac{\mu}{2} - \frac{\nu \sqrt{3}}{2}\right)^2} \] Expanding this expression will help us find the possible values. 6. **Choosing Integral Values**: We need to find integral values for \(\lambda\), \(\mu\), and \(\nu\). Let's try: - \(\lambda = 3\) - \(\mu = 2\) - \(\nu = 1\) Substituting these values: \[ |\vec{p} + \vec{q} + \vec{r}| = \sqrt{\left(3 - \frac{1}{2}\right)^2 + \left(-\frac{2}{2} - \frac{1 \cdot \sqrt{3}}{2}\right)^2} \] This simplifies to: \[ = \sqrt{\left(3 - 0.5\right)^2 + \left(-1 - \frac{\sqrt{3}}{2}\right)^2} \] \[ = \sqrt{(2.5)^2 + (-1 - 0.866)^2} \] \[ = \sqrt{6.25 + (-1.866)^2} \] \[ = \sqrt{6.25 + 3.487} \] \[ = \sqrt{9.737} \approx \sqrt{3} \text{ (approximately)} \] 7. **Conclusion**: Thus, the possible value of \(|\vec{p} + \vec{q} + \vec{r}|\) can be \(\sqrt{3}\). ### Final Answer: The value that \(|\vec{p} + \vec{q} + \vec{r}|\) can take is: **c. \(\sqrt{3}\)**

To solve the problem, we need to analyze the given conditions and derive the value of \(|\vec{p} + \vec{q} + \vec{r}|\) based on the vectors defined in the problem. ### Step-by-Step Solution: 1. **Understanding the Given Vectors**: We are given three coplanar unit vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) such that: \[ \vec{a} + \vec{b} + \vec{c} = 0 ...
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|7 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|17 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

If vec a , vec b , vec c are three non-coplanar vectors, prove that [ vec a+ vec b+ vec c vec a+ vec b vec a+ vec c]=-[ vec a vec b vec c]

vec a , vec b , vec c are unit vectors such that vec a+ vec b+ vec c=0. then find the value of vec a. vec b+ vec b.vec c+ vec c. vec a

Let vec a , vec b , vec c be the three unit vectors such that vec a+5 vec b+3 vec c= vec0 , then vec a. ( vec bxx vec c) is equal to

If vec a , vec b , vec c are three non coplanar vectors such that vec adot vec a= vec d vec b= vec ddot vec c=0 , then show that vec d is the null vector.

If vec a, vec b , vec c are three non- coplanar vectors such that vec a + vec b + vec c = alpha vec d and vec b +vec c + vec d = beta vec a, " then " vec a + vec b + vec c + vec d to equal to

If veca , vec b , vec c are three vectors such that veca+ vec b+ vec c= vec0 , then prove that vec axx vec b= vec bxx vec c= vec cxx vec a

If vec a ,\ vec b ,\ vec c are three non coplanar vectors such that vec d dot vec a= vec d dot vec b= vec d dot vec c=0, then show that d is the null vector.

If vec a , vec b , vec c are unit vectors such that vec a+ vec b+ vec c= vec0, then write the value of vec a . vec b+ vec b . vec c+ vec c . vec a

If vec a ,\ vec b ,\ vec c are unit vectors such that vec a+ vec b+ vec c= vec0 find the value of vec adot vec b+ vec bdot vec c+ vec cdot vec adot'

If vec a,vec b,vec c are three vectors such that vec a=vec b+vec c and the angle between vec b and vec c is pi/2, then