Home
Class 12
MATHS
Statement 1: If | vec a+ vec b|=| vec a-...

Statement 1: If `| vec a+ vec b|=| vec a- vec b|,t h e n vec aa n d vec b` are perpendicular to each other. Statement 2: If the diagonal of a parallelogram are equal magnitude, then the parallelogram is a rectangle.

A

Statement-II and statement II ar correct and Statement III is the correct explanation of statement I

B

Both statement I and statement II are correct but statement II is not the correct explanation of statement I

C

Statement I is correct but statement II is incorrect

D

Statement II is correct but statement I is incorrect

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given question, we need to analyze both statements one by one. ### Statement 1: If \( |\vec{a} + \vec{b}| = |\vec{a} - \vec{b}| \), then \(\vec{a}\) and \(\vec{b}\) are perpendicular to each other. **Step 1: Start with the given equation.** \[ |\vec{a} + \vec{b}| = |\vec{a} - \vec{b}| \] **Step 2: Square both sides to eliminate the modulus.** \[ |\vec{a} + \vec{b}|^2 = |\vec{a} - \vec{b}|^2 \] **Step 3: Expand both sides using the formula \( | \vec{x} |^2 = \vec{x} \cdot \vec{x} \).** \[ (\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b}) = (\vec{a} - \vec{b}) \cdot (\vec{a} - \vec{b}) \] **Step 4: Simplify both sides.** \[ \vec{a} \cdot \vec{a} + 2 \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{b} = \vec{a} \cdot \vec{a} - 2 \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{b} \] **Step 5: Cancel out common terms.** \[ 2 \vec{a} \cdot \vec{b} = -2 \vec{a} \cdot \vec{b} \] **Step 6: Combine like terms.** \[ 4 \vec{a} \cdot \vec{b} = 0 \] **Step 7: Conclude that \( \vec{a} \cdot \vec{b} = 0 \).** This implies that \(\vec{a}\) and \(\vec{b}\) are perpendicular. ### Conclusion for Statement 1: Statement 1 is **true**. --- ### Statement 2: If the diagonals of a parallelogram are equal in magnitude, then the parallelogram is a rectangle. **Step 1: Define the parallelogram and its diagonals.** Let \(ABCD\) be a parallelogram with diagonals \(AC\) and \(BD\). **Step 2: Express the diagonals using vectors.** The diagonal \(AC\) can be expressed as: \[ \vec{AC} = \vec{A} + \vec{B} \] The diagonal \(BD\) can be expressed as: \[ \vec{BD} = \vec{B} - \vec{A} \] **Step 3: Set the magnitudes of the diagonals equal.** Given that the diagonals are equal in magnitude: \[ |\vec{AC}| = |\vec{BD}| \] **Step 4: Square both sides to eliminate the modulus.** \[ |\vec{A} + \vec{B}|^2 = |\vec{B} - \vec{A}|^2 \] **Step 5: Expand both sides.** \[ (\vec{A} + \vec{B}) \cdot (\vec{A} + \vec{B}) = (\vec{B} - \vec{A}) \cdot (\vec{B} - \vec{A}) \] **Step 6: Simplify both sides.** \[ \vec{A} \cdot \vec{A} + 2 \vec{A} \cdot \vec{B} + \vec{B} \cdot \vec{B} = \vec{B} \cdot \vec{B} - 2 \vec{A} \cdot \vec{B} + \vec{A} \cdot \vec{A} \] **Step 7: Cancel out common terms.** \[ 2 \vec{A} \cdot \vec{B} = -2 \vec{A} \cdot \vec{B} \] **Step 8: Combine like terms.** \[ 4 \vec{A} \cdot \vec{B} = 0 \] **Step 9: Conclude that \( \vec{A} \cdot \vec{B} = 0 \).** This implies that the angles between the sides of the parallelogram are \(90^\circ\), indicating that \(ABCD\) is a rectangle. ### Conclusion for Statement 2: Statement 2 is **true**. --- ### Final Conclusion: Both statements are true.

To solve the given question, we need to analyze both statements one by one. ### Statement 1: If \( |\vec{a} + \vec{b}| = |\vec{a} - \vec{b}| \), then \(\vec{a}\) and \(\vec{b}\) are perpendicular to each other. **Step 1: Start with the given equation.** \[ |\vec{a} + \vec{b}| = |\vec{a} - \vec{b}| ...
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|7 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|17 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

Statement 1: If | vec a+ vec b|=| vec a- vec b| , then vec a and vec b are perpendicular to each other. Statement 2: If the diagonal of a parallelogram are equal magnitude, then the parallelogram is a rectangle. Which of the following Statements is/are correct ?

If abs(vec(a)+vec(b))=abs(vec(a)-vec(b)) , then show that vec(a) and vec(b) are perpendicular to each other.

Statement 1: | vec a|=3,| vec b|= 4 a n d | vec a+ vec b|=5,t h e n| vec a- vec b|=5. Statement 2: The length of the diagonals of a rectangle is the same.

Find | vec a- vec b|,\ if:| vec a|=3,\ | vec b|=4\ a n d\ vec adot vec b=1

Find | vec a- vec b|,\ if:| vec a|=2,\ | vec b|=5\ a n d\ vec adot vec b=8

Find | vec a- vec b|,\ if:| vec a|=2,\ | vec b|=3\ a n d\ vec adot vec b=4

If | vec axx vec b|=4,\ vec adot vec b =2,\ t h e n\ | vec a|^2| vec b|^2= 6 b. 2 c. 20 d. 8

If | vec a|=13 ,\ | vec b|=5\ a n d\ vec adot vec b=60 , t h e n find | vec axx vec b|dot

Find | vec a|a n d| vec b|,if( vec a - vec b)dot ( vec a+ vec b) =27 and | vec a|=2| vec b|dot

If vec axx vec b= vec axx vec c , vec a!= vec0a n d vec b!= vec c , show that vec b= vec c+t vec a for some scalar tdot