Home
Class 12
MATHS
P ,Q have position vectors vec a& vec b...

`P ,Q` have position vectors ` vec a& vec b` relative to the origin `' O^(prime)&X , Ya n d vec P Q` internally and externally respectgively in the ratio `2:1` Vector ` vec X Y=` `3/2( vec b- vec a)` b. `4/3( vec a- vec b)` c. `5/6( vec b- vec a)` d. `4/3( vec b- vec a)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the vector \( \vec{XY} \) given the position vectors of points \( P \) and \( Q \) relative to the origin \( O \) and the points \( X \) and \( Y \). The points \( P \) and \( Q \) divide the segment \( XY \) in the ratio \( 2:1 \) internally and externally, respectively. ### Step-by-step Solution: 1. **Identify the position vectors**: - Let the position vector of point \( P \) be \( \vec{a} \). - Let the position vector of point \( Q \) be \( \vec{b} \). 2. **Find the position vector of point \( X \)**: - Since \( P \) divides \( XY \) internally in the ratio \( 2:1 \), we can use the section formula: \[ \vec{OX} = \frac{2\vec{b} + 1\vec{a}}{2 + 1} = \frac{2\vec{b} + \vec{a}}{3} \] 3. **Find the position vector of point \( Y \)**: - Since \( Q \) divides \( XY \) externally in the ratio \( 2:1 \), we can also use the section formula: \[ \vec{OY} = \frac{2\vec{b} - 1\vec{a}}{2 - 1} = 2\vec{b} - \vec{a} \] 4. **Calculate the vector \( \vec{XY} \)**: - Now, we need to find \( \vec{XY} = \vec{OY} - \vec{OX} \): \[ \vec{XY} = \left(2\vec{b} - \vec{a}\right) - \left(\frac{2\vec{b} + \vec{a}}{3}\right) \] 5. **Simplify the expression**: - First, express \( \vec{OY} \) and \( \vec{OX} \) with a common denominator: \[ \vec{XY} = \left(2\vec{b} - \vec{a}\right) - \left(\frac{2\vec{b} + \vec{a}}{3}\right) = \frac{(6\vec{b} - 3\vec{a}) - (2\vec{b} + \vec{a})}{3} \] - Combine the terms: \[ \vec{XY} = \frac{6\vec{b} - 3\vec{a} - 2\vec{b} - \vec{a}}{3} = \frac{(6\vec{b} - 2\vec{b}) - (3\vec{a} + \vec{a})}{3} = \frac{4\vec{b} - 4\vec{a}}{3} \] 6. **Final result**: - Thus, we can express \( \vec{XY} \) as: \[ \vec{XY} = \frac{4}{3}(\vec{b} - \vec{a}) \] ### Conclusion: The correct answer is option (d): \( \vec{XY} = \frac{4}{3}(\vec{b} - \vec{a}) \).

To solve the problem, we need to find the vector \( \vec{XY} \) given the position vectors of points \( P \) and \( Q \) relative to the origin \( O \) and the points \( X \) and \( Y \). The points \( P \) and \( Q \) divide the segment \( XY \) in the ratio \( 2:1 \) internally and externally, respectively. ### Step-by-step Solution: 1. **Identify the position vectors**: - Let the position vector of point \( P \) be \( \vec{a} \). - Let the position vector of point \( Q \) be \( \vec{b} \). ...
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|7 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|17 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

For any vector vec a\ a n d\ vec b prove that | vec a+ vec b|lt=| vec a|+| vec b|dot

Find | vec a|a n d\ | vec b| , if : ( vec a+ vec b)dot'( vec a- vec b)=12\ a n d\ | vec a|=2| vec b|

Find | vec a|a n d\ | vec b| , if : ( vec a+ vec b)dot'( vec a- vec b)=13\ a n d\ | vec a|=2| vec b|

Show that the point A ,B ,C with position vectors vec a-2 vec b+3 vec c ,2 vec a+3 vec b-4 vec c and -7 vec b+10 vec c are collinear.

Show that the point A ,B ,C with position vectors vec a-2 vec b+3 vec c ,2 vec a+3 vec b-4 vec c and -7 vec b+10 vec c are collinear.

If two vectors vec a and vec b are such that | vec a|=2,| vec b|=1 and vec adot vec b=1 , find (3 vec a-5 vec b)dot(2 vec a+7 vec b)dot

If vec a_|_ vec b , then vector vec v in terms of vec aa n d vec b satisfying the equation s vec vdot vec a=0a n d vec vdot vec b=1a n d[ vec v vec a vec b]=1 is vec b/(| vec b|^2)+( vec axx vec b)/(| vec axx vec b|^2) b. vec b/(| vec b|^)+( vec axx vec b)/(| vec axx vec b|^2) c. vec b/(| vec b|^2)+( vec axx vec b)/(| vec axx vec b|^) d. none of these

Find | vec a- vec b|,\ if:| vec a|=2,\ | vec b|=3\ a n d\ vec adot vec b=4

Find | vec a- vec b|,\ if:| vec a|=3,\ | vec b|=4\ a n d\ vec adot vec b=1

If vec a , vec b , vec ca n d vec d are distinct vectors such that vec axx vec c= vec bxx vec da n d vec axx vec b= vec cxx vec d , prove that ( vec a- vec d). (vec b- vec c)!=0,