Home
Class 12
MATHS
If vec An d vec B are two vectors and k...

If ` vec An d vec B` are two vectors and `k` any scalar quantity greater than zero, then prove that `| vec A+ vec B|^2lt=(1+k)| vec A|^2+(1+1/k)| vec B|^2dot`

Text Solution

Verified by Experts

We know, `(1+k)|A|^(2)(1+(1)/(k))|B|^(2)`
`=|A|^(2)+k|A|^(2)+|B|^(2)+(1)/(k)|B|^(2)` . . . (i)
Also, `k|A|^(2)+(1)/(k)|B|^(2)ge2(k|A|^(2)*(1)/(k)|B|^(2))^((1)/(2))=1|A|*|B|` . . . (ii)
(since, arithmetic mean `ge` Geometric mean)
So, `(1+k)|A|^(2)+(1+(1)/(k))|B|^(2) ge |A|^(2)+|B|^(2)+2|A|*|B|`
`=(|A|+|B|)^(2)` [using eqs. (i) and (ii)]
And also, `|A|+|B| ge |A+B|`
hence, `(1+k)|A|^(2)+(1+(1)/(k))|B|^(2)ge|A+B|^(2)`.
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|7 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|17 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

For any vector vec a\ a n d\ vec b prove that | vec a+ vec b|lt=| vec a|+| vec b|dot

If vec a and vec b are two given vectors and k is any scalar, then find the vector vec r satisfying vec rxx vec a+k vec r= vec b .

For any two vectors vec a and vec b , prove that (vec a xx vec b )^2= |vec a |^2 |vec b|^2 -(vec a. vec b)^2

If vec a , vec b are two vectors such that | vec a+ vec b|=| vec b|, then prove that vec a+2 vec b is perpendicular to vec a .

If vec a ,\ vec b ,\ are two vectors such that | vec a+ vec b|=| vec a|, then prove that 2 vec a+ vec b is perpendicular to vec bdot

If vec aa n d vec b are two vectors such that | vec axx vec b|=2, then find the value of [ vec a vec b vec axx vec b]dot

If vec a ,\ vec b are two vectors such that | vec a+ vec b|\ =| vec b|, then prove that vec a+2 vec b is perpendicular to vec adot

If vec a , vec b are any two vectors, then give the geometrical interpretation of relation | vec a+ vec b|=| vec a- vec b|

If vec a ,\ vec b ,\ vec c be the vectors represented by the sides of a triangle, taken in order, then prove that vec a+ vec b+ vec c= vec0dot

For any two non zero vectors write the value of (| vec a+ vec b|^2+| vec a- vec b|^2)/(| vec a|^2+ | vec b"|^2)