Home
Class 12
MATHS
Statement -1 : If a transversal cuts t...

Statement -1 : If a transversal cuts the sides OL, OM and diagonal ON of a parallelogram at A, B, C respectively, then
`(OL)/(OA) + (OM)/(OB) =(ON)/(OC)`
Statement -2 : Three points with position vectors ` veca , vec b , vec c ` are collinear iff there exist scalars x, y, z not all zero such that `x vec a + y vec b +z vec c = vec 0, " where " x +y + z=0.`

Text Solution

AI Generated Solution

To solve the problem, we will analyze both statements step by step. ### Step 1: Understanding Statement 1 We need to prove that if a transversal cuts the sides OL, OM, and diagonal ON of a parallelogram at points A, B, and C respectively, then: \[ \frac{OL}{OA} + \frac{OM}{OB} = \frac{ON}{OC} \] ...
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|7 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|17 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

Three points with position vectors vec(a), vec(b), vec(c ) will be collinear if there exist scalars x, y, z such that

Statement -1 : If veca and vecb are non- collinear vectors, then points having position vectors x_(1) vec(a) + y_(1) vec(b) , x_(2)vec(a)+ y_(2) vec(b) and x_(3) veca + y_(3) vecb are collinear if |(x_(1),x_(2),x_(3)),(y_(1),y_(2),y_(3)),(1,1,1)|=0 Statement -2: Three points with position vectors veca, vecb , vec c are collinear iff there exist scalars x, y, z not all zero such that x vec a + y vec b + z vec c = vec 0, " where " x+y+z=0.

Let vec a , vec b , vec c be the position vectors of three distinct points A, B, C. If there exist scalars x, y, z (not all zero) such that x vec a+y vec b+z vec c=0a n dx+y+z=0, then show that A ,Ba n dC lie on a line.

Prove that a necessary and sufficient condition for three vectors vec a , vec b and vec c to be coplanar is that there exist scalars l , m , n not all zero simultaneously such that l vec a+m vec b+n vec c= vec0dot

veca , vec b , vec c are non-coplanar vectors and x vec a + y vec b + z vec c = vec 0 then

Show that the points with position vectors vec a-2 vec b+3 vec c ,-2 vec a+3 vec b+2 vec ca n d-8 vec a+13 vec b are collinear whatever be vec a , vec b , vec cdot

If veca , vec b , vec c are three vectors such that veca+ vec b+ vec c= vec0 , then prove that vec axx vec b= vec bxx vec c= vec cxx vec a

If veca , vec b and vec c represents three sides of a triangle taken in order prove that veca xx vec b = vec b xx vec c = vec c xx vec a

If vec a , vec b , vec c are three non-coplanar vectors, prove that [ vec a+ vec b+ vec c vec a+ vec b vec a+ vec c]=-[ vec a vec b vec c]

Show that the point A ,B ,C with position vectors vec a-2 vec b+3 vec c ,2 vec a+3 vec b-4 vec c and -7 vec b+10 vec c are collinear.