Home
Class 12
MATHS
Let vec A(t) = f1(t) hat i + f2(t) hat ...

Let `vec A(t) = f_1(t) hat i + f_2(t) hat j and vec B(t) = g(t)hat i+g_2(t) hat j,t in [0,1],f_1,f_2,g_1 g_2` are continuous functions. If `vec A(t) and vec B(t)` are non-zero vectors for all `t and vec A(0) = 2hat i + 3hat j,vec A(1) = 6hat i + 2hat j, vec B(0) = 3hat i + 2hat i and vec B(1) = 2hat i + 6hat j` Then,show that `vec A(t) and vec B(t)` are parallel for some `t`.

Text Solution

Verified by Experts

If A(t) and B(t) are non-zero vectors for all t
and A(0)=`2hati+3hatj,A(1)=6hati+2hatj,B(0)=3hati+2hatj`,
and `B(1)=2hati+6hatj`
In order to prove that `A(t) and B(t)` are parallel vectors for some values of t. it is sufficient to show A(t)=`lamdaB(t)` for some `lamda`.
`hArr {f_(1)(t)hati+f_(2)(t)hatj}=lamda{g_(1)(t)hati+g_(2)(t) hatj}`
`hArr f_(1)(t)=lamdag_(1)t and f_(2)(t)=lamdag_(2)(t)`
`harr(f_(1)(t))/(f_(2)(t))=(g_(1)(t))/(g_(2)(t))`
`harr f_(2)(t)g_(2)(t)-f_(2)(t)g_(1)t=0` for some `t in [0,1]`
let `f(t)=f_(1)(t)g_(2)(t)-f_(2)(t)g_(1)(t),t in [0,1]`
Since, `f_(1),f_(2),g_(1) and g_(2)` are continuous functions.
`thereforeF(t)` is also a continuous functions.
Also, `f(0)=f_(1)(0)g_(2)(0)-g_(1)(0)f_(2)(0)`
`=2xx2-3xx3=4-9=-5 lt 0`
and `f(1)=f_(1)(1)g_(2)(1)-g_(1)(1)f_(2)(1)`
`=6xx6-2xx2=32 gt 0`
thus, F(t) is a continuous function on [0,1] such that `F(0)*F(1) lt 0`.
`therefore`By intermediate value theorem, there exists some `t in (0,1)`
such that
`f(t)=0`
`implies f(t)g_(2)(t)-f_(2)(t)g_(1)t=0`
`implies A(t)=lamdaB(t)` for some `lamda`.
Hence, A(t) and B(t) are parallel vectors.
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|7 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|17 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

Find vec a +vec b if vec a = hat i - hat j and vec b =2 hat i

let vec a = 2hat i +3hat j and vec b = hat i +4hat j then find projection of vec a on vec b

if vec a = 2 hat i- 3 hat j+hat k and vec b = hat i+2 hat j- 3hat k then vec aXvec b is

If vec(F ) = hat(i) +2 hat(j) + hat(k) and vec(V) = 4hat(i) - hat(j) + 7hat(k) what is vec(F) . vec(v) ?

Find vec a . ( vec b xx vec c), if vec a=2 hat i+ hat j+3 hat k , vec b= hat i+2 hat j+ hat k and c=3 hat i+ hat j+2 hat k .

If vec(a) = hat(i) - 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) - 3 hat(j) + 5 hat(k) , then angle between vec(a) and vec(b) is

Find | vec axx vec b| , if vec a= hat i-7 hat j+7 hat k and vec b=3 hat i-2 hat j+2 hat k

Find ( vec a+3 vec b).(2 vec a- vec b) , If vec a= hat i+ hat j+2 hat k and vec b=3 hat i+2 hat j- hat k

If vec a= hat i+ hat j+ hat k ,\ vec b=2 hat i- hat j+3 hat k\ a n d\ vec c= hat i-2 hat j+ hat k find a unit vector parallel to 2 vec a- vec b+3 vec c

If vec a=3 hat i- hat j+2 hat k\ a n d\ vec b=2 hat i+ hat j- hat k\ t h e n find ( vec axx vec b) vec adot