Home
Class 12
MATHS
Prove that if cos alpha ne 1, cos beta n...

Prove that if `cos alpha ne 1, cos beta ne1 and cos gamma ne 1`, then the vectors `a=hati cos alpha+hatj+hatk,b=hati+hatj cos beta+hatk` and `c=hati+hatj+hatk cos gamma` can never be coplanar.

Text Solution

AI Generated Solution

To prove that the vectors \( \mathbf{a} = \hat{i} \cos \alpha + \hat{j} + \hat{k} \), \( \mathbf{b} = \hat{i} + \hat{j} \cos \beta + \hat{k} \), and \( \mathbf{c} = \hat{i} + \hat{j} + \hat{k} \cos \gamma \) are non-coplanar when \( \cos \alpha \neq 1 \), \( \cos \beta \neq 1 \), and \( \cos \gamma \neq 1 \), we can use the determinant method. ### Step 1: Write the vectors in matrix form We can express the vectors \( \mathbf{a} \), \( \mathbf{b} \), and \( \mathbf{c} \) in a matrix form to find the determinant: \[ \begin{vmatrix} \cos \alpha & 1 & 1 \\ ...
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|7 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|17 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

If a=3hati-2hatj+hatk,b=2hati-4hatj-3hatk and c=-hati+2hatj+2hatk , then a+b+c is

Find lambda if the vectors hati\ -\ hatj\ +\ hatk,\ 3 hati+\ hatj\ +\ 2 hatk\ and\ hati+lambda hatj+ hat3k\ are coplanar

Show that the vectors hati-hatj-hatk,2hati+3hatj+hatk and 7hati+3hatj-4hatk are coplanar.

The vectors lambdahati + hatj + 2hatk, hati + lambdahatj +hatk, 2hati - hatj + 2hatk are coplanar, if:

If the vectors 2hati-hatj+hatk,hati+2hatj-3hatk and 3hati+ahatj+5hatk are coplanar, the prove that a=-4.

If the vectors 4hati+11hatj+mhatk,7hati+2hatj+6hatk and hati+5hatj+4hatk are coplanar, then m is equal to

Show that the vectors hati-3hatj+2hatk,2hati-4hatj-hatk and 3hati+2hatj-hatk and linearly independent.

The vector cos alpha cos beta hati + cos alpha sin beta hatj + sin alpha hatk is a

Let alpha epsilon R and the three vectors veca=alpha hati+hatj+3hatk, vecb=2hati+hatj-alpha hatk and vecc=alpha hati-2hatj+3hatk . Then the set S={alpha: veca, vecb and vecc are coplanar}:

Prove that points hati+2hatj-3hatk, 2hati-hatj+hatk and 2hati+5hatj-hatk form a triangle in space.