Home
Class 12
MATHS
If veca, vecb and vecc are any three non...

If `veca, vecb and vecc` are any three non-coplanar vectors, then prove that points `l_(1)veca+ m_(1)vecb+ n_(1)vecc, l_(2)veca+m_(2)vecb+n_(2)vecc, l_(3)veca+m_(3)vecb+ n_(3)vecc, l_(4)veca + m_(4)vecb+ n_(4)vecc` are coplanar if `|{:(l_(1),, l_(2),,l_(3),,l_(4)),(m_(1),,m_(2),,m_(3),,m_(4)), (n_1,,n_2,, n_3,,n_4),(1,,1,,1,,1):}|=0`

Text Solution

Verified by Experts

We know that, four points having position vectors, a,b,c and d are coplanar, if there exists scalarrs x,y,z and t such that
`xa+yb+zc+td=0` where x+y+z+t=0
So, the given points will be coplanar, if thre exists scalars x,y,z and t such that
`x(l_(1)a+m_(1)b+n_(1)c)+y(l_(2)a+m_(2)b+n_(2)c)+z(l_(3)a+m_(3)b+n_(3)c)+t(l_(4)a+m_(4)b+n_(4)c)=0`
where, `x+y+z+t=0`
`implies (l_(1)x+l_(2)y+l_(3)z+l_(4)t)a+(m_(1)x+m_(2)y+m_(3)z+m_(4)t)b+(n_(1)x+n_(2)y+n_(3)z+n_(4)t)c=0`
where, `x+y+z+t=0`
`l_(1)x+l_(2)y+l_(3)z+l_(4)t0` . . (i)
`m_(1)x+m_(2)y+m_(3)z+m_(4)t=0` . . (ii)
`n_(1)x+n_(2)y+n_(3)z+n_(4)t=0` . . (iii)
and x+y+z+t=0 . . (iv)
Eliminating x,y,z and t from above equation, we get
`|(l_(1),l_(2),l_(3),l_(4)),(m_(1),m_(2),m_(3),m_(4)),(n_(1),n_(2),n_(3),n_(4)),(1,1,1,1)|=0`
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|7 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|17 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

If vec a , vec ba n d vec c are three non coplanar vectors, then ( veca + vecb + vecc )[( veca + vecb )×( veca + vecc )] is :

i. If veca, vecb and vecc are non-coplanar vectors, prove that vectors 3veca-7vecb-4vecc, 3veca-2vecb+vecc and veca+vecb+2vecc are coplanar.

i. If vec a , vec b a n d vec c are non-coplanar vectors, prove that vectors 3veca -7vecb -4 vecc ,3 veca -2vecb + vecc and veca + vecb +2 vecc are coplanar.

If veca, vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,7vecb-9vecc,12vecc-23veca)]

If veca, vecb and vecc are non-coplanar vectors, prove that the four points 2veca+3vecb-vecc, veca-2vecb+3vecc, 3veca+4vecb-2vecc and veca-6vecb+ 6 vecc are coplanar.

If vec a , vec ba n d vec c are three non-zero non-coplanar vectors, then the value of (veca.veca)vecb×vecc+(veca.vecb)vecc×veca+(veca.vecc)veca×vecb.

If veca, vecb and vecc are three non-zero, non-coplanar vectors,then find the linear relation between the following four vectors : veca-2vecb+3vecc, 2veca-3vecb+4vecc, 3veca-4vecb+ 5vecc, 7veca-11vecb+15vecc .

If a ,ba n dc are three non-cop0lanar vector, non-zero vectors then the value of ( veca . veca ) vecb × vecc +( veca . vecb ) vecc × veca +( veca . vecc ) veca × vecb .

If veca, vecb, vecc are non-coplanar vectors, prove that the following vectors are coplanar. (i) 3veca - 7vecb - 4vecc, 3veca - 2vecb + vecc, veca + vecb + 2vecc (ii) 5veca +6vecb + 7vecc, 7veca - 8vecb + 9vecc, 3veca + 20 vecb + 5vecc

If veca, vecb and vecc are three non - zero and non - coplanar vectors such that [(veca,vecb,vecc)]=4 , then the value of (veca+3vecb-vecc).((veca-vecb)xx(veca-2vecb-3vecc)) equal to