Home
Class 12
MATHS
Show that points with position vectors 2...

Show that points with position vectors `2veca-2vecb+3vecc,-2veca+3vecb-vecc` and `6veca-7vecb+7vecc` are collinear. It is given that vectors `veca,vecb` and `vecc` and non-coplanar.

Text Solution

AI Generated Solution

To show that the points with position vectors \( \vec{A} = 2\vec{a} - 2\vec{b} + 3\vec{c} \), \( \vec{B} = -2\vec{a} + 3\vec{b} - \vec{c} \), and \( \vec{C} = 6\vec{a} - 7\vec{b} + 7\vec{c} \) are collinear, we will follow these steps: ### Step 1: Find the vector \( \vec{AB} \) The vector \( \vec{AB} \) can be found by subtracting the position vector of point A from the position vector of point B: \[ \vec{AB} = \vec{B} - \vec{A} \] ...
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|7 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|17 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

Show that the three points whose position vectors are veca-2vecb+3vecc, 2veca+3vecb-4vecc, -7vecb+10vecc are collinear

Show that the vectors 2veca-vecb+3vecc, veca+vecb-2vecc and veca+vecb-3vecc are non-coplanar vectors (where veca, vecb, vecc are non-coplanar vectors).

Show that the points having position vectors (veca-2vecb+3vecc),(-2veca+3vecb+2vecc),(-8veca+13vecb) re collinear whatever veca,vecb,vecc may be

Show that the vectors veca-2vecb+3vecc,-2veca+3vecb-4vecc and - vecb+2vecc are coplanar vector where veca, vecb, vecc are non coplanar vectors

Show that the points whose position vectors are veca,vecb,vecc,vecd will be coplanar if [veca vecb vecc]-[veca vecb vecd]+[veca vecc vecd]-[vecb vecc vecd]=0

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

For any three vectors veca,vecb,vecc show that (veca-vecb),(vecb-vecc) (vecc-veca) are coplanar.

For non-zero vectors veca, vecb and vecc , |(veca xx vecb) .vecc = |veca||vecb||vecc| holds if and only if

i. If veca, vecb and vecc are non-coplanar vectors, prove that vectors 3veca-7vecb-4vecc, 3veca-2vecb+vecc and veca+vecb+2vecc are coplanar.

The position vector of three points are 2veca-vecb+3vecc , veca-2vecb+lambdavecc and muveca-5vecb where veca,vecb,vecc are non coplanar vectors. The points are collinear when