Home
Class 12
MATHS
Find the perimeter of a triangle with si...

Find the perimeter of a triangle with sides `3hati+4hatj+5hatk,4hati-3hatj-5hatk and 7 hati+hatj`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the perimeter of the triangle formed by the vectors \( \mathbf{A} = 3\hat{i} + 4\hat{j} + 5\hat{k} \), \( \mathbf{B} = 4\hat{i} - 3\hat{j} - 5\hat{k} \), and \( \mathbf{C} = 7\hat{i} + \hat{j} \), we will follow these steps: ### Step 1: Identify the vectors Let: - \( \mathbf{A} = 3\hat{i} + 4\hat{j} + 5\hat{k} \) - \( \mathbf{B} = 4\hat{i} - 3\hat{j} - 5\hat{k} \) - \( \mathbf{C} = 7\hat{i} + \hat{j} \) ### Step 2: Calculate the lengths of the sides of the triangle To find the perimeter, we need to calculate the lengths of the sides represented by these vectors. 1. **Length of side AB**: \[ \text{AB} = |\mathbf{A} - \mathbf{B}| \] \[ \mathbf{A} - \mathbf{B} = (3\hat{i} + 4\hat{j} + 5\hat{k}) - (4\hat{i} - 3\hat{j} - 5\hat{k}) = (3 - 4)\hat{i} + (4 + 3)\hat{j} + (5 + 5)\hat{k} = -\hat{i} + 7\hat{j} + 10\hat{k} \] \[ |\mathbf{A} - \mathbf{B}| = \sqrt{(-1)^2 + 7^2 + 10^2} = \sqrt{1 + 49 + 100} = \sqrt{150} \] 2. **Length of side BC**: \[ \text{BC} = |\mathbf{B} - \mathbf{C}| \] \[ \mathbf{B} - \mathbf{C} = (4\hat{i} - 3\hat{j} - 5\hat{k}) - (7\hat{i} + \hat{j}) = (4 - 7)\hat{i} + (-3 - 1)\hat{j} + (-5 - 0)\hat{k} = -3\hat{i} - 4\hat{j} - 5\hat{k} \] \[ |\mathbf{B} - \mathbf{C}| = \sqrt{(-3)^2 + (-4)^2 + (-5)^2} = \sqrt{9 + 16 + 25} = \sqrt{50} \] 3. **Length of side CA**: \[ \text{CA} = |\mathbf{C} - \mathbf{A}| \] \[ \mathbf{C} - \mathbf{A} = (7\hat{i} + \hat{j}) - (3\hat{i} + 4\hat{j} + 5\hat{k}) = (7 - 3)\hat{i} + (1 - 4)\hat{j} + (0 - 5)\hat{k} = 4\hat{i} - 3\hat{j} - 5\hat{k} \] \[ |\mathbf{C} - \mathbf{A}| = \sqrt{4^2 + (-3)^2 + (-5)^2} = \sqrt{16 + 9 + 25} = \sqrt{50} \] ### Step 3: Calculate the perimeter of the triangle The perimeter \( P \) of the triangle is given by the sum of the lengths of its sides: \[ P = |\mathbf{A} - \mathbf{B}| + |\mathbf{B} - \mathbf{C}| + |\mathbf{C} - \mathbf{A}| \] \[ P = \sqrt{150} + \sqrt{50} + \sqrt{50} \] \[ P = \sqrt{150} + 2\sqrt{50} \] ### Step 4: Simplify the perimeter We can simplify \( \sqrt{150} \) and \( \sqrt{50} \): \[ \sqrt{150} = \sqrt{25 \times 6} = 5\sqrt{6} \] \[ \sqrt{50} = \sqrt{25 \times 2} = 5\sqrt{2} \] Thus, \[ P = 5\sqrt{6} + 2(5\sqrt{2}) = 5\sqrt{6} + 10\sqrt{2} \] ### Final Answer The perimeter of the triangle is \( 5\sqrt{6} + 10\sqrt{2} \). ---
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|17 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|11 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

If the position vectors of the vertices of a triangle be 2hati+4hatj-hatk,4hati+5hatj+hatk and 3 hati+6hatj-3hatk , then the triangle is

If the position vectors of the vertices of a triangle of a triangle are 2 hati - hatj + hatk , hati - 3 hatj - 5 hatk and 3 hati -4 hatj - 4 hatk , then the triangle is

If ABCD is a parallelogram and the position vectors of A,B and C are hati+3hatj+5hatk, hati+hatj+hatk and 7 hati+7hatj+7hatk , then the poisitionn vector of D will be

Using dot product of vectors show that the vectors 2hati-hatj+hatk, hati-3hatj-5hatk and 3hati-4hatj-4hatk form a righat angled triangle

The position vectors of the sides of triangle are 3hati+4hatj+5hatk, hati+7hatk and 5hati+5hatk . The distance between the circumcentre and the ortho centre is

Show that the vectors 2hati-hatj+hatk and hati-3hatj-5hatk are at righat angles.

Show that the points A,B and C having position vectors (3hati - 4hatj - 4hatk), (2hati - hatj + hatk) and (hati - 3hatj - 5hatk) respectively, from the vertices of a right-angled triangle.

Show that the points A,B and C having position vectors (3hati - 4hatj - 4hatk), (2hati - hatj + hatk) and (hati - 3hatj - 5hatk) respectively, from the vertices of a right-angled triangle.

Find the angle between the following pairs of vectors 3hati+2hatj-6hatk, 4hati-3hatj+hatk , hati-2hatj+3hatk, 3hati-2hatj+hatk

Find the sum of the vectors vec=hati-2hatj+hatk, vecb=-2hati+4 hatj+5hatk and vecc=hati-6hatj-7hatk