Home
Class 12
MATHS
If vec(OP)=2hati+3hatj-hatk and vec(OQ)=...

If `vec(OP)=2hati+3hatj-hatk and vec(OQ)=3hati-4hatj+2hatk` find the modulus and direction cosines of `vec(PQ)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the modulus and direction cosines of the vector \(\vec{PQ}\) given the vectors \(\vec{OP}\) and \(\vec{OQ}\), we will follow these steps: ### Step 1: Determine the vectors \(\vec{OP}\) and \(\vec{OQ}\) Given: \[ \vec{OP} = 2\hat{i} + 3\hat{j} - \hat{k} \] \[ \vec{OQ} = 3\hat{i} - 4\hat{j} + 2\hat{k} \] ### Step 2: Calculate the vector \(\vec{PQ}\) The vector \(\vec{PQ}\) can be found using the formula: \[ \vec{PQ} = \vec{OQ} - \vec{OP} \] Substituting the values: \[ \vec{PQ} = (3\hat{i} - 4\hat{j} + 2\hat{k}) - (2\hat{i} + 3\hat{j} - \hat{k}) \] ### Step 3: Simplify the expression for \(\vec{PQ}\) Now, we perform the subtraction component-wise: \[ \vec{PQ} = (3 - 2)\hat{i} + (-4 - 3)\hat{j} + (2 + 1)\hat{k} \] \[ \vec{PQ} = 1\hat{i} - 7\hat{j} + 3\hat{k} \] ### Step 4: Find the modulus of \(\vec{PQ}\) The modulus of a vector \(\vec{A} = a\hat{i} + b\hat{j} + c\hat{k}\) is given by: \[ |\vec{A}| = \sqrt{a^2 + b^2 + c^2} \] For \(\vec{PQ} = 1\hat{i} - 7\hat{j} + 3\hat{k}\): \[ |\vec{PQ}| = \sqrt{1^2 + (-7)^2 + 3^2} \] \[ |\vec{PQ}| = \sqrt{1 + 49 + 9} = \sqrt{59} \] ### Step 5: Calculate the direction cosines of \(\vec{PQ}\) The direction cosines are given by: \[ \cos \alpha = \frac{a}{|\vec{A}|}, \quad \cos \beta = \frac{b}{|\vec{A}|}, \quad \cos \gamma = \frac{c}{|\vec{A}|} \] For \(\vec{PQ} = 1\hat{i} - 7\hat{j} + 3\hat{k}\): - \(a = 1\) - \(b = -7\) - \(c = 3\) Thus, the direction cosines are: \[ \cos \alpha = \frac{1}{\sqrt{59}}, \quad \cos \beta = \frac{-7}{\sqrt{59}}, \quad \cos \gamma = \frac{3}{\sqrt{59}} \] ### Final Result - The modulus of \(\vec{PQ}\) is \(\sqrt{59}\). - The direction cosines of \(\vec{PQ}\) are: - \(\cos \alpha = \frac{1}{\sqrt{59}}\) - \(\cos \beta = \frac{-7}{\sqrt{59}}\) - \(\cos \gamma = \frac{3}{\sqrt{59}}\)
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|11 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise VECTOR ALGEBRA EXERCISES 1: Single Option Correct Type Questions|1 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|7 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

If vec(OP)=2hati+3hatj-hatk and vec(OQ)=5hati+4hatj-3hatk . Find vec(PQ) and the direction cosines of vec(PQ) .

(i) Find the unit vector in the direction of veca+vecb if veca=2hati-hatj+2hatk , and vecb=-hati+hatj-hatk (ii) Find the direction ratios and direction cosines of the vector veca=5hati+3hatj-4hatk .

The position vectors of A and B are 3hati - hatj +7hatk and 4hati-3hatj-hatk . Find the magnitude and direction cosines of vec(AB) .

If vecF = 3hati + 4hatj+5hatk and vecS=6hati +2hatj+5hatk , the find the work done.

If vecF=3hati-4hatj+5hatk " and " vecS=6hati+2hatj+5hatk , the find the work done.

If in parallelogram ABCD, diagonal vectors are vec(AC)=2hati+3hatj+4hatk and vec(BD)=-6hati+7hatj-2hatk , then find the adjacent side vectors vec(AB) and vec(AD) .

If vec(A)=2hati+hatj+hatk " and " vecB=10hati+5hatj+5hatk , if the magnitude of component of (vec(B)-vec(A)) along vec(A) is 4sqrt(x) . Then x will be .

Let vec(OA)=hati+3hatj-2hatk and vec(OB)=3hati+hatj-2hatk. Then vector vec(OC) biecting the angle AOB and C being a point on the line AB is

If vec(OA)=2hati-hatj+hatk, vec(OB)=hati-3hatj-5hatk and vec(OC)=3hati-3hatj-3hatk then show that CB is perpendicular to AC.

If vec(OA) =2hati+3hatj-4hatk and vec(OB) =hatj+hatk are two vectors through the origin O, find the projection of vec(OA) and vec(OB)

ARIHANT MATHS ENGLISH-VECTOR ALGEBRA-Exercise For Session 2
  1. If a=2hati-hatj+2hatk and b=-hati+hatj-hatk, then find a+b. Also, find...

    Text Solution

    |

  2. Find a unit vector in the direction of the resultant of the vectors (h...

    Text Solution

    |

  3. Find the direction cosines of the resultant of the vectors (hati+hatj+...

    Text Solution

    |

  4. In a regular hexagon ABCDEF, vec(AE)

    Text Solution

    |

  5. Prove that 3vec(OD)+vec(DA)+vec(DB)+vec(DC) is equal to vec(OA)+vec(OB...

    Text Solution

    |

  6. In a regular hexagon ABCDEF, bar(AB) + bar(AC)+bar(AD)+ bar(AE) + bar(...

    Text Solution

    |

  7. ABCDE is a pentagon. Prove that the resultant of forces vec (AB), vec(...

    Text Solution

    |

  8. about to only mathematics

    Text Solution

    |

  9. If P(-1,2) and Q(3,-7) are two points, express the vector PQ in terms ...

    Text Solution

    |

  10. If vec(OP)=2hati+3hatj-hatk and vec(OQ)=3hati-4hatj+2hatk find the mod...

    Text Solution

    |

  11. Show that the points A,B and C having position vectors (3hati - 4hatj ...

    Text Solution

    |

  12. If a=2hati+2hatj-hatk and |xveca|=1, then find x.

    Text Solution

    |

  13. If p=7hati-2hatj+3hatk and q=3hati+hatj+5hatk, then find the magnitude...

    Text Solution

    |

  14. Find a vector in the direction of 5hati-hatj+2hatk, which has magnitud...

    Text Solution

    |

  15. If a=hati+2hatj+2hatk and b=3hati+6hatj+2hatk, then find a vector in t...

    Text Solution

    |

  16. Find the position vector of a point R which divides the line joining t...

    Text Solution

    |

  17. If the position vector of one end of the line segment AB be 2hati+3hat...

    Text Solution

    |