Home
Class 12
MATHS
Show that the vectors a-2b+4c,-2a+3b-6c ...

Show that the vectors `a-2b+4c,-2a+3b-6c and -b+2c` are coplanar vector, where a,b,c are non-coplanar vectors.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise VECTOR ALGEBRA EXERCISES 1: Single Option Correct Type Questions|1 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|81 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|17 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

Show that the vectors veca-2vecb+3vecc,-2veca+3vecb-4vecc and - vecb+2vecc are coplanar vector where veca, vecb, vecc are non coplanar vectors

Show that the vectors 2 vec a- vec b+3 vec c , vec a+ vec b-2 vec ca n d vec a+ vec b-3 vec c are non-coplanar vectors (where vec a , vec b , vec c are non-coplanar vectors)

Show that the vectors 2 vec a- vec b+3 vec c , vec a+ vec b-2 vec ca n d vec a+ vec b-3 vec c are non-coplanar vectors (where vec a , vec b , vec c are non-coplanar vectors)

Show that the vectors 2veca-vecb+3vecc, veca+vecb-2vecc and veca+vecb-3vecc are non-coplanar vectors (where veca, vecb, vecc are non-coplanar vectors).

Show that the vectors vec a , vec b and vec c are coplanar if vec a+ vec b , vec b+ vec c and vec c+ vec a are coplanar.

Show that the points P(a+2b+c),Q(a-b-c),R(3a+b+2c) and S(5a+3b+5c) are coplanar given that a,b and c are non-coplanar.

36. If vec a, vec b,vec c and vec d are unit vectors such that (vec a xx vec b) . vec c xx vec d= 1 and vec a.vec c =1/2 then a) vec a, vec b and vec c are non-coplanar b) vec b, vec c ,vec d are non -coplanar c) vec b, vecd are non parallel d) vec a , vec d are parallel and vec b, vec c are parallel

Show that the vectors vec a-2 vec b+3 vec c , vec a-3 vec b+5 vec ca n d-2 vec a+3 vec b-4 vec c are coplanar, where vec a , vec b , vec c are non-coplanar.

If the points P( veca + 2 vec b + vec c ), Q (2 veca + 3 vecb), R (vecb+ t vec c ) are collinear, where veca , vec b , vec c are non-coplanar vectors, the value of t is

If a,b and c are non-coplanar vectors, prove that 3a-7b-4c, 3a-2b+c and a+b+2c are coplanar.