Home
Class 12
MATHS
If vectors veca =hati +2hatj -hatk, vecb...

If vectors `veca =hati +2hatj -hatk, vecb = 2hati -hatj +hatk and vecc = lamdahati +hatj +2hatk` are coplanar, then find the value of `(lamda -4)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \lambda - 4 \) given that the vectors \( \vec{a} = \hat{i} + 2\hat{j} - \hat{k} \), \( \vec{b} = 2\hat{i} - \hat{j} + \hat{k} \), and \( \vec{c} = \lambda\hat{i} + \hat{j} + 2\hat{k} \) are coplanar, we can follow these steps: ### Step 1: Understand the condition for coplanarity Vectors are coplanar if the scalar triple product of the vectors is zero. This can be expressed using the determinant of a matrix formed by the vectors. ### Step 2: Set up the determinant We will set up the determinant using the components of the vectors: \[ \begin{vmatrix} 1 & 2 & -1 \\ 2 & -1 & 1 \\ \lambda & 1 & 2 \end{vmatrix} = 0 \] ### Step 3: Calculate the determinant We will calculate the determinant: \[ \text{Det} = 1 \cdot \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} - 2 \cdot \begin{vmatrix} 2 & 1 \\ \lambda & 2 \end{vmatrix} - (-1) \cdot \begin{vmatrix} 2 & -1 \\ \lambda & 1 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} = (-1)(2) - (1)(1) = -2 - 1 = -3 \) 2. \( \begin{vmatrix} 2 & 1 \\ \lambda & 2 \end{vmatrix} = (2)(2) - (1)(\lambda) = 4 - \lambda \) 3. \( \begin{vmatrix} 2 & -1 \\ \lambda & 1 \end{vmatrix} = (2)(1) - (-1)(\lambda) = 2 + \lambda \) Putting these back into the determinant: \[ \text{Det} = 1(-3) - 2(4 - \lambda) + (2 + \lambda) = -3 - 8 + 2\lambda + 2 + \lambda \] \[ = -9 + 3\lambda \] ### Step 4: Set the determinant to zero Since the vectors are coplanar: \[ -9 + 3\lambda = 0 \] ### Step 5: Solve for \( \lambda \) \[ 3\lambda = 9 \implies \lambda = 3 \] ### Step 6: Find \( \lambda - 4 \) Now we need to find \( \lambda - 4 \): \[ \lambda - 4 = 3 - 4 = -1 \] ### Final Answer The value of \( \lambda - 4 \) is \( -1 \). ---

To find the value of \( \lambda - 4 \) given that the vectors \( \vec{a} = \hat{i} + 2\hat{j} - \hat{k} \), \( \vec{b} = 2\hat{i} - \hat{j} + \hat{k} \), and \( \vec{c} = \lambda\hat{i} + \hat{j} + 2\hat{k} \) are coplanar, we can follow these steps: ### Step 1: Understand the condition for coplanarity Vectors are coplanar if the scalar triple product of the vectors is zero. This can be expressed using the determinant of a matrix formed by the vectors. ### Step 2: Set up the determinant We will set up the determinant using the components of the vectors: \[ ...
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|8 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Matching Type Questions)|1 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

The vectors veca=hati-2hatj+3hatk, vecb=-2hati+3hatj-4hatk and vec c=hati-3hatj+lambdahatk are coplanar if the value of lambda is

If the vectors veca=2hati-hatj+hatk, vecb=hati+2hatj-hat(3k) and vecc= 3hati+lamda hatj+5hatk are coplanar the value of lamda is (A) -1 (B) 3 (C) -4 (D) -1/4

Find the sum of the vectors vec=hati-2hatj+hatk, vecb=-2hati+4 hatj+5hatk and vecc=hati-6hatj-7hatk

Vectors 2hati+2hatj-2hatk,5hati+yhatj+hatk and -hati+2hatj+2hatk are coplanar then find the value of y.

find vecA xx vecB if vecA = hati - 2 hatj + 4 hatk and vecB = 3 hati - hatj + 2hatk

The vectors are given below veca = hati + 2hatj +3hatk vecb = 2hati + 4hatj + 6hatk and vecc = 3hati + 6hatj + 9 hatk find the components of the vector veca + vecb -vecc

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca = 2hati -3hatj-1hatk and vecb =hati + 4hatj -2hatk " then " veca xx vecb is

If veca=3hati+hatj-4hatk and vecb=6hati+5hatj-2hatk find |veca Xvecb|