Home
Class 12
MATHS
Consider points A,B,C annd D with positi...

Consider points A,B,C annd D with position vectors `7hati-4hatj+7hatk,hati-6hatj+10hatk,-1hati-3hatj+4hatk and 5hati-hatj+5hatk`, respectively. Then, ABCD is

A

square

B

rhombus

C

rectangle

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine the nature of the quadrilateral formed by the points A, B, C, and D with the given position vectors, we will calculate the lengths of the sides AB, BC, CD, and DA. Given position vectors: - A = \(7\hat{i} - 4\hat{j} + 7\hat{k}\) - B = \(\hat{i} - 6\hat{j} + 10\hat{k}\) - C = \(-\hat{i} - 3\hat{j} + 4\hat{k}\) - D = \(5\hat{i} - \hat{j} + 5\hat{k}\) ### Step 1: Calculate the length of AB The position vector of A is \( \vec{A} = 7\hat{i} - 4\hat{j} + 7\hat{k} \) and the position vector of B is \( \vec{B} = \hat{i} - 6\hat{j} + 10\hat{k} \). Using the distance formula: \[ AB = |\vec{B} - \vec{A}| = |(\hat{i} - 6\hat{j} + 10\hat{k}) - (7\hat{i} - 4\hat{j} + 7\hat{k})| \] \[ = |(-6\hat{i} + (-6 + 4)\hat{j} + (10 - 7)\hat{k})| \] \[ = |(-6\hat{i} - 2\hat{j} + 3\hat{k})| \] \[ = \sqrt{(-6)^2 + (-2)^2 + (3)^2} = \sqrt{36 + 4 + 9} = \sqrt{49} = 7 \] ### Step 2: Calculate the length of BC Now, we calculate the length of BC: \[ BC = |\vec{C} - \vec{B}| = |(-\hat{i} - 3\hat{j} + 4\hat{k}) - (\hat{i} - 6\hat{j} + 10\hat{k})| \] \[ = |(-\hat{i} - 3\hat{j} + 4\hat{k}) - (\hat{i} - 6\hat{j} + 10\hat{k})| \] \[ = |(-1 - 1)\hat{i} + (-3 + 6)\hat{j} + (4 - 10)\hat{k}| \] \[ = |(-2\hat{i} + 3\hat{j} - 6\hat{k})| \] \[ = \sqrt{(-2)^2 + (3)^2 + (-6)^2} = \sqrt{4 + 9 + 36} = \sqrt{49} = 7 \] ### Step 3: Calculate the length of CD Next, we calculate the length of CD: \[ CD = |\vec{D} - \vec{C}| = |(5\hat{i} - \hat{j} + 5\hat{k}) - (-\hat{i} - 3\hat{j} + 4\hat{k})| \] \[ = |(5 + 1)\hat{i} + (-1 + 3)\hat{j} + (5 - 4)\hat{k}| \] \[ = |(6\hat{i} + 2\hat{j} + 1\hat{k})| \] \[ = \sqrt{(6)^2 + (2)^2 + (1)^2} = \sqrt{36 + 4 + 1} = \sqrt{41} \] ### Step 4: Calculate the length of DA Finally, we calculate the length of DA: \[ DA = |\vec{A} - \vec{D}| = |(7\hat{i} - 4\hat{j} + 7\hat{k}) - (5\hat{i} - \hat{j} + 5\hat{k})| \] \[ = |(7 - 5)\hat{i} + (-4 + 1)\hat{j} + (7 - 5)\hat{k}| \] \[ = |(2\hat{i} - 3\hat{j} + 2\hat{k})| \] \[ = \sqrt{(2)^2 + (-3)^2 + (2)^2} = \sqrt{4 + 9 + 4} = \sqrt{17} \] ### Conclusion We have the lengths of the sides: - \(AB = 7\) - \(BC = 7\) - \(CD = \sqrt{41}\) - \(DA = \sqrt{17}\) Since \(AB = BC\) but \(CD \neq DA\), the quadrilateral ABCD is neither a rectangle nor a square, and the opposite sides are not equal. Thus, ABCD does not fit the criteria for any of the standard quadrilaterals. ### Final Answer The quadrilateral ABCD is neither a rectangle nor a square, and none of the given options apply. ---

To determine the nature of the quadrilateral formed by the points A, B, C, and D with the given position vectors, we will calculate the lengths of the sides AB, BC, CD, and DA. Given position vectors: - A = \(7\hat{i} - 4\hat{j} + 7\hat{k}\) - B = \(\hat{i} - 6\hat{j} + 10\hat{k}\) - C = \(-\hat{i} - 3\hat{j} + 4\hat{k}\) - D = \(5\hat{i} - \hat{j} + 5\hat{k}\) ...
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|8 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

Consider points A, B, C and D with position vectors 7 hati - 4 hat j + 7 hat k , hati - 6 hat j + 10 hat k , - hati - 3 hatj + 4 hatk and 5 hati - hatj + 5 hatk respectively. Then, ABCD is a

Show that the four points A,B,C and D with position vectors 4hati+5hatj+hatk, -hatj-hatk, 3hati+9hatj+4hatk and 4(-hati+hatj+hatk) respectively, are coplanar.

The values of a for which the points A, B, and C with position vectors 2hati - hatj + hatk, hati - 3hatj - 5hatk, and ahati - 3hatj + hatk ,respectively, are the vertices of a right-angled triangle with C = pi/2 are

Show that the points A,B and C having position vectors (3hati - 4hatj - 4hatk), (2hati - hatj + hatk) and (hati - 3hatj - 5hatk) respectively, from the vertices of a right-angled triangle.

Show that the points A,B and C having position vectors (3hati - 4hatj - 4hatk), (2hati - hatj + hatk) and (hati - 3hatj - 5hatk) respectively, from the vertices of a right-angled triangle.

The position vectors of the point A, B, C and D are 3hati-2hatj -hatk, 2hati+3hatj-4hatk, -hati+hatj+2hatk and 4hati+5hatj +lamda hatk , respectively. If the points A, B, C and D lie on a plane, find the value of lamda .

The points with position vectors alpha hati+hatj+hatk, hati-hatj-hatk, hati+2hatj-hatk, hati+hatj+betahatk are coplanar if

If three points A, B and C have position vectors hati + x hatj + 3 hatk, 3 hati + 4 hatj + 7 hatk and y hati -2hatj - 5 hatk respectively are collinear, then (x, y) =

Show that the points A, B and C with position vectors -2hati+3hatj+5hatk, hati+2hatj+3hatk and 7hati-hatk respectively are collinear

The volume of the tetrahedron whose vertices are the points with positon vectors hati-6hatj+10hatk, -hati-3hatj+7hatk, 5hati-hatj+lambdahatk and 7hati-4hatj+7hatk is 11 cubic units if the value of lamda is