Home
Class 12
MATHS
The vector hat i+x hat j+3 hat k is rot...

The vector ` hat i+x hat j+3 hat k` is rotated through an angle `theta` and doubled in magnitude, then it becomes `4 hat i+(4x-2)dot hat j+2 hat k` . Then value of `x` are `-2/3` (b) `1/3` (c) `2/3` (d) 2

A

`{-(2)/(3),2}`

B

`((1)/(3),2)`

C

`{(2)/(3),0}`

D

`{2,7}`

Text Solution

Verified by Experts

The correct Answer is:
A

Since, the vector `hati+xhatj+3hatk`k is doubled in magnitude, then it becomes
`4hati+(4x-2)hatj+2hatk`
`therefore 2|hati+xhatj+3hatk|=4hati+(4x-2)hatj+2hatk|`
`implies 2sqrt(2+x^(2)+9)=sqrt(16+(4x-2)^(2)+4)`
`implies 40+4x^(2)=20+(4x-2)^(2)`
`implies 3x^(2)-4x-4=0`
`implies (x-2)(3x+2)=0`
`implies x=2,-(2)/(3)`.
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|8 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

Find the angle between the vectors hat i-2 hat j+3k and 3 hat i-2 hat j+k

Find the magnitude of vector vec a=(3 hat k+4 hat j)xx( hat i+ hat j- hat k)dot

If the vectors hat i- hat j , hat j+ hat k and vec a form a triangle, then vec a may be a. - hat i- hat k b. hat i-2 hat j- hat k c. 2 hat i+ hat j+ hat k d. hat i+ hat k

Find the angle between the vectors hat i-2 hat j+3 hat k and 3 hat i-2 hat j+ hat kdot

Find a vector of magnitude 9, which is perpendicular to both vectors 4 hat i- hat j+3 hat ka n d-2 hat i+ hat j-2 hat k .

If the vectors hat(i) - 2x hat(j) + 3 y hat(k) and hat(i) +2x hat(j) - y hat(k) are perpendicular, then the locus of (x,y) is

vec a=2 hat i- hat j+ hat k , vec b= hat i+2 hat j- hat k , vec c= hat i+ hat j-2 hat kdot A vector coplanar with vec ba n d vec c whose projectin on vec a is magnitude sqrt(2/3) is 2 hat i+3 hat j-3 hat k b. -2 hat i- hat j+5 hat k c. 2 hat i+3 hat j+3 hat k d. 2 hat i+ hat j+5 hat k

Find the angle between the vectors 2 hat(i) - hat(j) - hat(k) and 3 hat(i) + 4 hat(j) - hat(k) .

A vector of magnitude 5 and perpendicular to hat(i) - 2 hat(j) + hat(k) and 2 hat(i) + hat(j) - 3 hat(k) is

The vectors 3 hat i- hat j +2 hat k' , 2 hat i+hat j + 3 hat k and hat i + lambda hat j - hat k are coplanar if value of lambda is (A) -2 (B) 0 (C) 2 (D) any real number