Home
Class 12
MATHS
If X follows the binomial distribution w...

If X follows the binomial distribution with parameters n=6 and p and 9p(X=4)=P(X=2), then p is

A

`(1)/(4)`

B

`(1)/(3)`

C

`(1)/(2)`

D

`(2)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( p \) given that \( X \) follows a binomial distribution with parameters \( n = 6 \) and \( p \), and the condition \( 9P(X=4) = P(X=2) \). ### Step-by-Step Solution: 1. **Understand the Binomial Probability Formula**: The probability of getting exactly \( r \) successes in \( n \) trials in a binomial distribution is given by: \[ P(X = r) = \binom{n}{r} p^r q^{n-r} \] where \( q = 1 - p \). 2. **Set Up the Given Condition**: According to the problem, we have: \[ 9P(X=4) = P(X=2) \] 3. **Calculate \( P(X=4) \)**: Using the binomial probability formula: \[ P(X=4) = \binom{6}{4} p^4 q^{2} \] where \( \binom{6}{4} = \frac{6!}{4! \cdot 2!} = 15 \). Thus, \[ P(X=4) = 15 p^4 (1-p)^2 \] 4. **Calculate \( P(X=2) \)**: Similarly, for \( P(X=2) \): \[ P(X=2) = \binom{6}{2} p^2 q^{4} \] where \( \binom{6}{2} = \frac{6!}{2! \cdot 4!} = 15 \). Thus, \[ P(X=2) = 15 p^2 (1-p)^4 \] 5. **Substitute into the Condition**: Now substituting these into the condition: \[ 9(15 p^4 (1-p)^2) = 15 p^2 (1-p)^4 \] Simplifying this gives: \[ 135 p^4 (1-p)^2 = 15 p^2 (1-p)^4 \] 6. **Divide by 15**: Dividing both sides by 15: \[ 9 p^4 (1-p)^2 = p^2 (1-p)^4 \] 7. **Rearranging the Equation**: Rearranging gives: \[ 9 p^4 (1-p)^2 - p^2 (1-p)^4 = 0 \] Factoring out \( p^2 (1-p)^2 \): \[ p^2 (1-p)^2 (9p^2 - (1-p)^2) = 0 \] 8. **Solve for \( p \)**: The equation \( p^2 (1-p)^2 = 0 \) gives \( p = 0 \) or \( p = 1 \), which are not valid since \( p \) must be between 0 and 1. Now solving: \[ 9p^2 - (1 - 2p + p^2) = 0 \] Simplifying gives: \[ 8p^2 + 2p - 1 = 0 \] 9. **Using the Quadratic Formula**: Using the quadratic formula \( p = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 8, b = 2, c = -1 \): \[ p = \frac{-2 \pm \sqrt{2^2 - 4 \cdot 8 \cdot (-1)}}{2 \cdot 8} \] \[ p = \frac{-2 \pm \sqrt{4 + 32}}{16} \] \[ p = \frac{-2 \pm \sqrt{36}}{16} \] \[ p = \frac{-2 \pm 6}{16} \] This gives: \[ p = \frac{4}{16} = \frac{1}{4} \quad \text{or} \quad p = \frac{-8}{16} = -\frac{1}{2} \text{ (not valid)} \] 10. **Final Answer**: Thus, the value of \( p \) is: \[ p = \frac{1}{4} \]
Promotional Banner

Topper's Solved these Questions

  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|29 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Probability Exercise 1: Single Option Single Correct Type Question|1 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|10 Videos
  • PERMUTATIONS AND COMBINATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|28 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|51 Videos

Similar Questions

Explore conceptually related problems

If X follows a binomial distribution with parameters n=6 and p. If 4P(X=4))=P(X=2) , then P=

If X follows Binomial distribution with parameters n=5, p and P(X=2)=9P(X=3), then p is equal to ……. .

In a binomial distribution, the parameter n=6 . If 9P(X=4)=P(X=2) , then p=

If X follows a binomial distribution with parameters n=100 and p = 1/3 , then P(X = r) is maximum when

Suppose a random variable X follows the binomial distribution with parameters n and p, where 0

Suppose a random variable X follows the binomial distribution with parameters n and p, where 0

Suppose a random variable X follows the binomial distribution with parameters n and p, where 0

If X follows a binomial distribution with parameters n=8 and p=1//2 , then p(|X-4|le2) equals

If X follows a binomial distribution with parameters n=8 and p=1//2 , then p(|X-4|le2) equals

If X has a binomial distribution, B (n,p) with parameters n and p such that P(X=2)=P(X=3) , then E(X) , the mean of variable X , is