Home
Class 12
MATHS
If X follows a binomial distribution wit...

If X follows a binomial distribution with parameters `n=100 and p = 1/3`, then `P(X = r)` is maximum when

A

16

B

32

C

33

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( r \) for which \( P(X = r) \) is maximum in a binomial distribution with parameters \( n = 100 \) and \( p = \frac{1}{3} \). ### Step-by-Step Solution: 1. **Identify the parameters of the binomial distribution**: - The parameters are \( n = 100 \) and \( p = \frac{1}{3} \). 2. **Calculate \( n + 1 \) and \( n + 1 \cdot p \)**: - First, calculate \( n + 1 \): \[ n + 1 = 100 + 1 = 101 \] - Next, calculate \( n + 1 \cdot p \): \[ n + 1 \cdot p = 101 \cdot \frac{1}{3} = \frac{101}{3} \approx 33.67 \] 3. **Determine if \( n + 1 \cdot p \) is an integer**: - Since \( \frac{101}{3} \) is not an integer, we proceed to the next step. 4. **Find the unique mode**: - When \( n + 1 \cdot p \) is not an integer, the unique mode is the integer part of \( n + 1 \cdot p \): \[ \text{Unique mode} = \lfloor n + 1 \cdot p \rfloor = \lfloor 33.67 \rfloor = 33 \] 5. **Conclusion**: - Thus, \( P(X = r) \) is maximum when \( r = 33 \). ### Final Answer: The value of \( r \) for which \( P(X = r) \) is maximum is \( 33 \).
Promotional Banner

Topper's Solved these Questions

  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|29 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Probability Exercise 1: Single Option Single Correct Type Question|1 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|10 Videos
  • PERMUTATIONS AND COMBINATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|28 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|51 Videos

Similar Questions

Explore conceptually related problems

If X follows a binomial distribution with parameters n=8 and p=1//2 , then p(|X-4|le2) equals

If X follows a binomial distribution with parameters n=8 and p=1//2 , then p(|X-4|le2) equals

If X follows a binomial distribution with parameters n=6 and p. If 4P(X=4))=P(X=2) , then P=

If X follows the binomial distribution with parameters n=6 and p and 9p(X=4)=P(X=2), then p is

Suppose a random variable X follows the binomial distribution with parameters n and p, where 0

Suppose a random variable X follows the binomial distribution with parameters n and p, where 0

Suppose a random variable X follows the binomial distribution with parameters n and p, where 0

If X follows Binomial distribution with parameters n=5, p and P(X=2)=9P(X=3), then p is equal to ……. .

In a binomial distribution, the parameter n=6 . If 9P(X=4)=P(X=2) , then p=

If X follows a binomial distribution with mean 4 and variance 2, find P(X ge5)