Home
Class 12
MATHS
If sin alpha , 1 , cos 2 alpha are in ...

If ` sin alpha , 1 , cos 2 alpha ` are in GP, then find the general solution for ` alpha `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( \sin \alpha, 1, \cos 2\alpha \) are in geometric progression (GP), we can follow these steps: ### Step 1: Understanding the condition for GP If three terms \( a, b, c \) are in GP, then the relationship between them is given by: \[ b^2 = ac \] In our case, we have: \[ 1^2 = \sin \alpha \cdot \cos 2\alpha \] This simplifies to: \[ 1 = \sin \alpha \cdot \cos 2\alpha \] ### Step 2: Using the double angle formula We know that: \[ \cos 2\alpha = 1 - 2\sin^2 \alpha \] Substituting this into our equation gives: \[ 1 = \sin \alpha (1 - 2\sin^2 \alpha) \] Expanding this, we have: \[ 1 = \sin \alpha - 2\sin^3 \alpha \] ### Step 3: Rearranging the equation Rearranging the equation leads to: \[ 2\sin^3 \alpha - \sin \alpha + 1 = 0 \] ### Step 4: Factoring the cubic equation We can factor this equation. First, we can check for possible rational roots. By testing \( \sin \alpha = -1 \): \[ 2(-1)^3 - (-1) + 1 = -2 + 1 + 1 = 0 \] Thus, \( \sin \alpha = -1 \) is a root. We can factor out \( (1 + \sin \alpha) \): \[ 2\sin^3 \alpha - \sin \alpha + 1 = (1 + \sin \alpha)(2\sin^2 \alpha - 2\sin \alpha + 1) \] ### Step 5: Analyzing the quadratic factor Now we need to analyze the quadratic: \[ 2\sin^2 \alpha - 2\sin \alpha + 1 \] To find its discriminant: \[ D = b^2 - 4ac = (-2)^2 - 4 \cdot 2 \cdot 1 = 4 - 8 = -4 \] Since the discriminant is negative, this quadratic has no real roots. Therefore, the only solution comes from: \[ 1 + \sin \alpha = 0 \implies \sin \alpha = -1 \] ### Step 6: Finding the general solution for \( \alpha \) The sine function equals -1 at: \[ \alpha = \frac{3\pi}{2} + 2n\pi \quad \text{for } n \in \mathbb{Z} \] This can also be expressed as: \[ \alpha = 4n\pi - \frac{\pi}{2} \quad \text{for } n \in \mathbb{Z} \] ### Final Answer The general solution for \( \alpha \) is: \[ \alpha = 4n\pi - \frac{\pi}{2} \quad \text{where } n \in \mathbb{Z} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise EXAMPLES ( Matching Type Questions )|1 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise EXAMPLES ( Subjective Type Examples )|2 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Three Dimensional Coordinate System Exercise 12 : Question Asked in Previous Years Exam|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

If sin alpha.sinbeta - cos alpha.cos beta+1=0 , then find the value of cot alpha.tan beta .

If A=[{:(cos alpha,sin alpha),(-sin alpha, cos alpha):}] and A^(-1)=A ' then find the value of alpha .

If (2 sin alpha)/(1 + cos alpha + sin alpha) = 3/4 , then the value of (1 - cos alpha + sinalpha)/(1 + sin alpha) is equal to

If sin alpha sin beta - cos alpha cos beta + 1=0, then the value of 1+cot alpha tan beta is

If alpha satisfies 15 sin^(4)alpha + 10 cos^(4)alpha=6 , then find the value of 27 sin^(8)alpha + 8 cos^(8) alpha

If sin alpha, sin beta and cos alpha are in GP, then roots of x^2 + 2x cot beta + 1 = 0 are always

Find the value of sin (alpha + beta) , cos (alpha + beta) , and tan (alpha + beta), given sin alpha = (3)/(5) , cos beta = (5)/(13), alpha and beta in Quadrant I.

If cos(alpha+beta)+sin(alpha-beta)=0 and tan beta ne1 , then find the value of tan alpha .

If sin alpha -cos alpha = m , then the value of sin^6alpha+cos^6alpha in terms of m is

If sin alpha, sin beta, sin gamma are in AP and cos alpha, cos beta, cos gamma are in GP , then the value of (cos^(2)alpha+cos^(2)gamma+4 cos alpha cos gamma-2 sin alpha sin gamma-2)/(1-2 sin^(2)beta) , where beta != (pi)/(4) , is equal to