Home
Class 12
MATHS
Solve secx-1=(sqrt(2)-1)tanx...

Solve `secx-1=(sqrt(2)-1)tanx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sec x - 1 = (\sqrt{2} - 1) \tan x \), we will follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ \sec x - 1 = (\sqrt{2} - 1) \tan x \] ### Step 2: Square both sides Next, we square both sides to eliminate the tangent: \[ (\sec x - 1)^2 = ((\sqrt{2} - 1) \tan x)^2 \] ### Step 3: Expand both sides Using the identity \( \sec^2 x = 1 + \tan^2 x \), we expand both sides: \[ \sec^2 x - 2 \sec x + 1 = (\sqrt{2} - 1)^2 \tan^2 x \] Calculating \( (\sqrt{2} - 1)^2 \): \[ (\sqrt{2} - 1)^2 = 2 - 2\sqrt{2} + 1 = 3 - 2\sqrt{2} \] Thus, we rewrite the equation as: \[ \sec^2 x - 2 \sec x + 1 = (3 - 2\sqrt{2}) \tan^2 x \] ### Step 4: Substitute \( \tan^2 x \) Using the identity \( \tan^2 x = \sec^2 x - 1 \), we substitute: \[ \sec^2 x - 2 \sec x + 1 = (3 - 2\sqrt{2})(\sec^2 x - 1) \] ### Step 5: Expand the right-hand side Expanding the right-hand side gives: \[ \sec^2 x - 2 \sec x + 1 = (3 - 2\sqrt{2}) \sec^2 x - (3 - 2\sqrt{2}) \] ### Step 6: Rearrange the equation Rearranging terms, we get: \[ \sec^2 x - (3 - 2\sqrt{2}) \sec^2 x - 2 \sec x + 1 + (3 - 2\sqrt{2}) = 0 \] This simplifies to: \[ (1 - (3 - 2\sqrt{2})) \sec^2 x - 2 \sec x + (4 - 2\sqrt{2}) = 0 \] \[ (2\sqrt{2} - 2) \sec^2 x - 2 \sec x + (4 - 2\sqrt{2}) = 0 \] ### Step 7: Factor out common terms Dividing through by 2, we have: \[ (\sqrt{2} - 1) \sec^2 x - \sec x + (2 - \sqrt{2}) = 0 \] ### Step 8: Solve the quadratic equation Let \( y = \sec x \). The equation becomes: \[ (\sqrt{2} - 1) y^2 - y + (2 - \sqrt{2}) = 0 \] Using the quadratic formula \( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ y = \frac{1 \pm \sqrt{(-1)^2 - 4(\sqrt{2} - 1)(2 - \sqrt{2})}}{2(\sqrt{2} - 1)} \] ### Step 9: Calculate the discriminant Calculating the discriminant: \[ 1 - 4(\sqrt{2} - 1)(2 - \sqrt{2}) = 1 - 4(2\sqrt{2} - 2 - 2 + \sqrt{2}) = 1 - 4(3 - 3\sqrt{2}) \] This simplifies to: \[ 1 - 12 + 12\sqrt{2} = 12\sqrt{2} - 11 \] ### Step 10: Find values of \( y \) Substituting back into the quadratic formula gives us values for \( y \), which is \( \sec x \). ### Step 11: Determine \( x \) Once we find \( \sec x \), we can find \( x \) using: \[ \sec x = \frac{1}{\cos x} \] Thus, \( x = \cos^{-1}(\frac{1}{\sec x}) \). ### Step 12: General solution The general solution will be: \[ x = 2n\pi \quad \text{for } n \in \mathbb{Z} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise EXAMPLES ( Matching Type Questions )|1 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise EXAMPLES ( Subjective Type Examples )|2 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Three Dimensional Coordinate System Exercise 12 : Question Asked in Previous Years Exam|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

Solve :(tanx-(1)/(sqrt3))(cosx-(1)/(2))le0.

Evaluate: intsec^2x/sqrt (1+tanx)dx

solve int (sec^2x)/((1+tanx)^3) dx

Solve: dy / dx + y secx = tanx

Solve: dy / dx + y secx = tanx

Solve: dy / dx + y secx = tanx

Solve the equation, (1-tanx)(1+sin2x)=1+tanx

Solve the following equation: tan^2x+(1-sqrt(3))tanx-sqrt(3)=0

Solve the following equation: tan^2x+(1-sqrt(3))tanx-sqrt(3)=0

int1/(7+5cosx)\ dx= 1/(sqrt(6))tan^(-1)(1/(sqrt(6))tanx/2)+C (b) 1/(sqrt(3))tan^(-1)(1/(sqrt(3))tanx/2)+C (c) 1/4tan^(-1)(tanx/2)+C (d) 1/7tan^(-1)(tanx/2)+C