Home
Class 12
MATHS
Solve tan theta + tan 2 theta + tan the...

Solve ` tan theta + tan 2 theta + tan theta * tan 2 theta * tan 3 theta=1 `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan \theta + \tan 2\theta + \tan \theta \tan 2\theta \tan 3\theta = 1 \), we can follow these steps: ### Step 1: Rewrite \( \tan 3\theta \) We can express \( \tan 3\theta \) using the angle addition formula: \[ \tan 3\theta = \tan(2\theta + \theta) = \frac{\tan 2\theta + \tan \theta}{1 - \tan 2\theta \tan \theta} \] This allows us to rewrite our equation in terms of \( \tan \theta \) and \( \tan 2\theta \). ### Step 2: Substitute \( \tan 3\theta \) into the equation Substituting the expression for \( \tan 3\theta \) into the original equation gives us: \[ \tan \theta + \tan 2\theta + \tan \theta \tan 2\theta \left( \frac{\tan 2\theta + \tan \theta}{1 - \tan 2\theta \tan \theta} \right) = 1 \] ### Step 3: Simplify the equation Now, let's simplify the left-hand side: \[ \tan \theta + \tan 2\theta + \frac{\tan \theta \tan 2\theta (\tan 2\theta + \tan \theta)}{1 - \tan 2\theta \tan \theta} = 1 \] Let \( x = \tan \theta \) and \( y = \tan 2\theta \). Then we have: \[ x + y + \frac{xy(x + y)}{1 - xy} = 1 \] ### Step 4: Combine terms Rearranging gives: \[ x + y + \frac{xy(x + y)}{1 - xy} - 1 = 0 \] This can be solved further by multiplying through by \( 1 - xy \) to eliminate the fraction: \[ (x + y)(1 - xy) + xy(x + y) - (1 - xy) = 0 \] This simplifies to: \[ (x + y) - 1 = 0 \] Thus, we have: \[ x + y = 1 \] ### Step 5: Substitute back \( x \) and \( y \) We know \( x = \tan \theta \) and \( y = \tan 2\theta \). Therefore: \[ \tan \theta + \tan 2\theta = 1 \] ### Step 6: Solve for \( \theta \) Using the double angle formula, we know: \[ \tan 2\theta = \frac{2\tan \theta}{1 - \tan^2 \theta} \] Substituting this into our equation gives: \[ \tan \theta + \frac{2\tan \theta}{1 - \tan^2 \theta} = 1 \] Let \( z = \tan \theta \): \[ z + \frac{2z}{1 - z^2} = 1 \] Multiplying through by \( 1 - z^2 \): \[ z(1 - z^2) + 2z = 1 - z^2 \] This simplifies to: \[ z - z^3 + 2z = 1 - z^2 \] Rearranging gives: \[ z^3 - 3z + z^2 + 1 = 0 \] ### Step 7: Solve the cubic equation This cubic equation can be solved using methods such as synthetic division or numerical methods to find the roots. ### Step 8: Find \( \theta \) Once we find the values of \( z \), we can find \( \theta \) using: \[ \theta = \tan^{-1}(z) \] ### Final Answer The solutions for \( \theta \) will be: \[ \theta = n\pi + (-1)^n \frac{\pi}{4}, \quad n \in \mathbb{Z} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise EXAMPLES ( Matching Type Questions )|1 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise EXAMPLES ( Subjective Type Examples )|2 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Three Dimensional Coordinate System Exercise 12 : Question Asked in Previous Years Exam|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

Solve : tan 3theta tan 2 theta = 1

Solve: tan4 theta = tan2theta

Solve tan 5 theta= cot 2 theta .

Prove that: tan 8theta - tan 6theta - tan 2theta = tan 8theta \ tan 6theta \ tan 2theta .

tan theta + 2 tan 2 theta + 4 tan 4 theta + 8 cot 8 theta = cot theta.

General solution of the equation tan theta + tan 4 theta + tan 7 theta = tan theta cdot tan 4 theta cdot tan 7 theta "is" theta =

Solve tan3theta=-1

Solve tan theta+tan 2 theta+sqrt(3) tan theta tan 2 theta = sqrt(3) .

Solve : tan 3 theta = 1 .

Prove that : tan 4 theta = (4 tan theta - 4 tan^3 theta)/(1-6 tan^2 theta + tan^4 theta) .